Water environment monitoring has always been an important method of water resource environmental protection. In practical applications, there are problems such as large water bodies, long monitoring periods, and large transmission and processing delays. Aiming at these problems, this paper proposes a framework and method for detecting floating objects on water based on the sixth-generation mobile network (6G). Using satellite remote sensing monitoring combined with ground-truth data, a regression model is established to invert various water parameters. Then, using chlorophyll as the main reference indicator, anomalies are detected, early warnings are given in a timely manner, and unmanned aerial vehicles (UAVs) are notified through 6G to detect targets in abnormal waters. The target detection method in this paper uses MobileNetV3 to replace the VGG16 network in the single-shot multi-box detector (SSD) to reduce the computational cost of the model and adapt to the computing resources of the UAV. The convolutional block attention module (CBAM) is adopted to enhance feature fusion. A small target data enhancement module is used to enhance the network identification capability in the training process, and the key-frame extraction module is applied to simplify the detection process. The network model is deployed in system-on-a-chip (SOC) using edge computing, the processing flow is optimized, and the image preprocessing module is added. Tested in an edge environment, the improved model has a 2.9% increase in detection accuracy and is 55% higher in detection speed compared with SSD. The experimental results show that this method can meet the real-time requirements of video surveillance target detection.
For the detection of objects floating in the river, most of the traditional intelligent video monitoring methods are used to monitor through manual viewing. During the traditional video data transmission and processing, the massive amount of data will put pressure on the background such as network and computing power. The new effective method is to crop and optimize YOLOV5s, add a specific image pre-processing module, and deploy it by edge computing, embed a SOC (System on Chip) chip in the web camera for real-time processing of video data. Simulation experiments prove that the above method can improve the accuracy and speed of the target detection network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.