Although polycationic surfaces have high antimicrobial efficacies, they suffer from high toxicity to mammalian cells and severe surface accumulation of dead bacteria. For the first time, we propose a surface-initiated photoiniferter-mediated polymerization (SI-PIMP) strategy of constructing a "cleaning" zwitterionic outer layer on a polycationic bactericidal background layer to physically hinder the availability of polycationic moieties for mammalian cells in aqueous service. In dry conditions, the polycationic layer exerts the contact-active bactericidal property toward the adherent bacteria, as the zwitterionic layer collapses. In aqueous environment, the zwitterionic layer forms a hydration layer to significantly inhibit the attachment of planktonic bacteria and the accumulation of dead bacteria, while the polycationic layer kills bacteria occasionally deposited on the surface, thus preserving the antibacterial capability for a long period. More importantly, the zwitterionic hydrated layer protects the mammalian cells from toxicity induced by the bactericidal background layer, and therefore hierarchical antibacterial surfaces present much better biocompatibility than that of the naked cationic references. The dominant antibacterial mechanism of the hierarchical surfaces can switch from the bactericidal efficacy in dry storage to the bacteria repellent capability in aqueous service, showing great advantages in the infection-resistant applications.
Despite the advanced modern biotechniques, thrombosis and bacterial infection of biomedical devices remain common complications that are associated with morbidity and mortality. Most antifouling surfaces are in solid form and cannot simultaneously fulfill the requirements for antithrombosis and antibacterial efficacy. In this work, we present a facile strategy to fabricate a slippery surface. This surface is created by combining photografting polymerization with osmotically driven wrinkling that can generate a coarse morphology, and followed by infusing with fluorocarbon liquid. The lubricant-infused wrinkling slippery surface can greatly prevent protein attachment, reduce platelet adhesion, and suppress thrombus formation in vitro. Furthermore, E. coli and S. aureus attachment on the slippery surfaces is reduced by ∼98.8% and ∼96.9% after 24 h incubation, relative to poly(styrene-b-isobutylene-b-styrene) (SIBS) references. This slippery surface is biocompatible and has no toxicity to L929 cells. This surface-coating strategy that effectively reduces thrombosis and the incidence of infection will greatly decrease healthcare costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.