Wi-Fi fingerprinting has been widely used for indoor localization because of its good cost-effectiveness. However, it suffers from relatively low localization accuracy and robustness owing to the signal fluctuations. Virtual Access Points (VAP) can effectively reduce the impact of signal fluctuation problem in Wi-Fi fingerprinting. Current techniques normally use the Log-Normal Shadowing Model to estimate the virtual location of the access point. This would lead to inaccurate location estimation due to the signal attenuation factor in the model, which is difficult to be determined. To overcome this challenge, in this study, we propose a novel approach to calculating the virtual location of the access points by using the Apollonius Circle theory, specifically the distance ratio, which can eliminate the attenuation parameter term in the original model. This is based on the assumption that neighboring locations share the same attenuation parameter corresponding to the signal attenuation caused by obstacles. We evaluated the proposed method in a laboratory building with three different kinds of scenes and 1194 test points in total. The experimental results show that the proposed approach can improve the accuracy and robustness of the Wi-Fi fingerprinting techniques and achieve state-of-art performance.
Map-matching is a popular method that uses spatial information to improve the accuracy of positioning methods. The performance of map matching methods is closely related to spatial characteristics. Although several studies have demonstrated that certain map matching algorithms are affected by some spatial structures (e.g., parallel paths), they focus on the analysis of single map matching method or few spatial structures. In this study, we explored how the most commonly-used four spatial characteristics (namely forks, open spaces, corners, and narrow corridors) affect three popular map matching methods, namely particle filtering (PF), hidden Markov model (HMM), and geometric methods. We first provide a theoretical analysis on how spatial characteristics affect the performance of map matching methods, and then evaluate these effects through experiments. We found that corners and narrow corridors are helpful in improving the positioning accuracy, while forks and open spaces often lead to a larger positioning error. We hope that our findings are helpful for future researchers in choosing proper map matching algorithms with considering the spatial characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.