Background
The purpose of this study was to investigate the mechanism of action of muscone on breast cancer using network pharmacology and molecular docking techniques.
Methods
Targets of muscone acid action were collected using the PubChem and SwissTargetPrediction databases. Relevant target sets of breast cancer were collected using the GeneCards database, and the intersection of the drug-disease targets was used as the potential target of muscone action in breast cancer. The STRING database was used to construct a target protein-protein interaction (PPI) network, and the data were imported into Cytoscape 3.7.1 for topological network analysis to obtain the core target genes of muscone in breast cancer. Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the DAVID database. The correlation of core gene expression with breast cancer survival was analyzed using the online Kaplan-Meier plotter tool. Molecular docking of core target genes to muscone was performed using AutoDock Vina.
Results
A total of 18 common targets of muscone and breast cancer were obtained through target intersection. The PPI map and topology analysis revealed that androgen receptor (AR), progesterone receptor (PGR), matrix metalloproteinase 9 (MMP9), prostaglandin-endoperoxide synthase 2 (PTGS2), heat shock protein 90 alpha family class A member 1 (HSP90AA1), mitogen-activated protein kinase 14 (MAPK14), and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) might be the key targets of muscone acting on breast cancer. The GO enrichment analysis identified 60 terms, while the KEGG pathway enrichment analysis identified 7 signaling pathways, including steroid hormone biosynthesis, ovarian steroidogenesis, cancer pathways, and the tumor necrosis factor (TNF) signaling pathway. The results of survival stage analysis showed that the binding activity between muskone and key targets was better than other targets. The molecular docking results showed that muscone had the highest docking affinity for the key target
CYP19A1
gene at −7.0 kJ/moL.
Conclusions
Muscone might exert anti–breast cancer effects through cancer pathways, ovarian steroidogenesis, and TNF signaling pathways and has the potential to be developed as a clinical agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.