The analysis of the quality indexes of sugarcane juice plays a vital role in the process of refining sugarcane, breeding, cultivation, and production management. The paper analyzes the dynamic laws of five quality indexes (i.e., brix, purity, polarization, sucrose content, and reducing sugar) combined with graphs over time along the course of crushing season (December-March) in Guangxi province of China. During this time, the sugarcane is in the mature stage and hypermature stage. At the beginning of December to early January, during which sugarcane is in the later stage of maturity, the nutrients are accumulating, causing brix, purity, polarization, and sucrose content increase. At the beginning of January to mid-February, due to low temperature and insufficient light, it is not conducive to accumulation of nutrients. However, there is the so-called "sugar back" phenomenon and reducing sugar rises gradually in March, leading to deterioration of the quality of sugarcane juice. The results show that timely harvest of sugarcane is beneficial for sugar making. The regression analysis results show that some of quality indexes have strong correlation between them and the regression models are extremely significant, indicating that the prediction results are ideal.
Abstract. This thesis put forward a physical force-driven packing optimization design method for solving the Strip Packing Problems (SPP). This thesis researched on the following aspects: The mathematical optimization model of SPP is proposed firstly. Based on the convex hull plus rubber band compact layout method, the method of physical analysis of the layout process and the time-based layout simulation process are presented definitely. An enhanced version of the mate algorithm of surplus rectangle for rectangle packing is proposed. This method use the minimal rectangle to replacing polygon objects and choose the next packing object by a series of score decision rules. Different forces are applied to the packing objects in corresponding stages which would drive them to move compactly and the optimal packing result can be obtained in the end. The comparison of computational experiment results shows that the proposed packing method have a better performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.