To improve light absorption, in this study, the narrow band gap highly-ordered free-standing hydrogenated amorphous germanium nanoparticles (a-Ge:H NPs) were introduced into the CH 3 NH 3 PbI 3−x Cl x films. Here, the NPs were fabricated by means of the radio frequency plasma enhanced chemical vapour deposition system. The effects of hydrogen dilution ratio (RH) on the microstructure and bonding configuration of a-Ge:H NPs were investigated by Raman, transmission electron microscopy and Fourier transform infrared spectroscopy measurements. As RH increases, an improvement in the structure order of a-Ge:H NPs was observed. Compared with the pure CH 3 NH 3 PbI 3−x Cl x films, the light absorption of the hybrid a-Ge:H NPs/CH 3 NH 3 PbI 3−x Cl x active layers was improved, and the surface coverage of the hybrid active layers nearly reached 100%. This new finding provided a novel way to solve the universal unfavourable surface coverage problem that existed in the ultrasonic spray-coating process. Meanwhile, compared with the device that is based on pure CH 3 NH 3 PbI 3−x Cl x films, due to the enhanced light absorption in the visible range, a ∼14.6% enhancement in the power conversion efficiency was achieved based on the hybrid a-Ge:H NPs/CH 3 NH 3 PbI 3−x Cl x active layers.
Organic–inorganic hybrid perovskite solar cells have become one of the highly promising candidates for photovoltaic technologies because of their low processing cost, rapid-growing power conversion efficiency and easy preparation process. Electron transfer layer (ETL) plays an important role in exciton separation and charge transport for perovskite devices. A TiO2–ZnO binary mixed nanoparticle (NP) ETL, which can be prepared in low-temperature hydrothermal method, was proposed. By analyzing the XRD and SEM, the incorporation of mixed NPs thin film improved the interfacial stability of ZnO/perovskite and prevented the perovskite layer from being decomposed as compared to the pure ZnO NPs thin film. Furthermore, UV spectrum and EIS results show that TiO2–ZnO mixed NP ETL has high transmittance and maintains good electrical properties of pure ZnO NPs basically. Finally, the efficiency of perovskite device based on TiO2–ZnO mixed NP ETL was improved to 15%. Our research provides a simple way for the application of ZnO in PCSs.
BackgroundThe purpose of this study was to identify the prognostic value of cuproptosis and copper metabolism–related genes, to clarify their molecular and immunological characteristics, and to elucidate their benefits in head and neck squamous cell carcinoma (HNSCC).MethodsThe details of human cuproptosis and copper metabolism–related genes were searched and filtered from the msigdb database and the latest literature. To identify prognostic genes associated with cuproptosis and copper metabolism, we used least absolute shrinkage and selection operator regression, and this coefficient was used to set up a prognostic risk score model. HNSCC samples were divided into two groups according to the median risk. Afterwards, the function and immune characteristics of these genes in HNSCC were analyzed.ResultsThe 14-gene signature was constructed to classify HNSCC patients into low-risk and high-risk groups according to the risk level. In the The Cancer Genome Atlas (TCGA) cohort, the overall survival (OS) rate of the high-risk group was lower than that of the low-risk group (P < 0.0001). The area under the curve of the time-dependent Receiver Operator Characteristic (ROC) curve assessed the good performance of the genetic signature in predicting OS and showed similar performance in the external validation cohort. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment assays and Protein-Protein Interaction (PPI) protein networks have been used to explore signaling pathways and potential mechanisms that were markedly active in patients with HNSCC. Furthermore, the 14 cuproptosis and copper metabolism-related genes were significantly correlated with the immune microenvironment, suggesting that these genes may be linked with the immune regulation and development of HNSCC.ConclusionsOur results emphasize the significance of cuproptosis and copper metabolism as a predictive biomarker for HNSCC, and its expression levels seem to be correlated with immune- related features; thus, they may be a possible biomarker for HNSCC prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.