Ferroptosis, as a promising therapeutic strategy for cancers, has aroused great interest. Quantifying the quick dynamic changes in key parameters during the early course of ferroptosis can provide insights for understanding the underlying mechanisms of ferroptosis and help the development of therapies targeting ferroptosis. However, in situ and quantitatively monitoring the quick responses of living cancer cells to ferroptosis at the single-cell level remains technically challenging. In this work, we selected HuH7 cells (hepatocellular carcinoma (HCC) cells) as a cell model and Erastin as a typical ferroptosis inducer. We utilized scanning electrochemical microscopy (SECM) to quantitatively and in situ monitor the early course of ferroptosis in HuH7 cells by characterizing the three key parameters of cell ferroptosis (i.e., cell membrane permeability, respiratory activity, and the redox state). The SECM results show that the membrane permeability of ferroptotic HuH7 cells continuously increased from 0 to 8.1 × 10 −5 m s −1 , the cellular oxygen consumption was continuously reduced by half, and H 2 O 2 released from the cells exhibited periodic bursts during the early course of ferroptosis, indicating the gradually destroyed cell membrane structure and intensified oxidative stress. Our work realizes, for the first time, the in situ and quantitative monitoring of the cell membrane permeability, respiratory activity, and H 2 O 2 level of the early ferroptosis process of a single living cancer cell with SECM, which can contribute to the understanding of the physiological process and underlying mechanisms of ferroptosis.
Extracellular matrix (ECM) stiffness affects the drug resistance behavior of cancer cells, while multidrug resistance protein 1 (MRP1) on cell membrane confers treatment resistance via actively transporting drugs out of...
Correction for ‘In situ monitoring of functional activity of extracellular matrix stiffness-dependent multidrug resistance protein 1 using scanning electrochemical microscopy’ by Shuake Kuermanbayi et al., Chem. Sci., 2022, https://doi.org/10.1039/d2sc02708a.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.