Cracks and other diseases may occur in the long-term operation of highway tunnels and reduce the structural load-carrying capacity. Strengthening using carbon fiber reinforced polymer (CFRP) sheets and other materials could extend the service time of the tunnels. However, the process of strengthening tunnels is remarkably different from the process of strengthening aboveground structures because of the secondary load. In order to understand the development of stress and deformation of strengthened tunnels under secondary load, a 1 : 10 scaled model was tested to simulate the tunnel strengthened with CFRP under different damage states. The test results show that CFRP strengthening improved the stiffness of the structure and inhibited the propagation of the existing cracks. The peeling of the CFRP sheets made the strengthened structure quickly lose its load-carrying capacity, causing the instability of the structure. The failure loads of the structures strengthened at different damage states were essentially the same, with an average value of 184% of the original failure load. Nevertheless, the early strengthening helped control the structural deformation. The test results also demonstrate that the bonding strength between the CFRP and the lining is essential for strengthening effectiveness. This study provides a theoretical basis for similar engineering reinforcement designs.
Purpose
The effects of infiltrant-related factors during post-processing on mechanical performance are fully considered for three-dimensional printing (3DP) technology. The factors contain infiltrant type, infiltrating means, infiltrating frequency and time interval of infiltrating.
Design/methodology/approach
A series of printing experiments are conducted and the parts are processed with different conditions by considering the above mentioned four parameters. Then the mechanical performances of the parts are tested from both macroscopic and microscopic papers. In the macroscopic view, the compressive strength of each printed part is measured by the materials testing machine – Instron 3367. In the microscopic view, scanning electron microscope and energy dispersion spectrum are used to obtain microstructure images and element content results. The pore size distributions of the parts are measured further to illustrate that if the particles are bound tightly by infiltrant. Then, partial least square (PLS) is used to conduct the analysis of the influencing factors, which can solve the small-sample problem well. The regression analysis and the influencing degree of each factor are explored further.
Findings
The experimental results show that commercial infiltrant has an outstanding performance than other super glues. The infiltrating action will own higher compressive strength than the brushing action. The higher infiltrating frequency and inconsistent infiltrating time interval will contribute to better mechanical performance. The PLS analysis shows that the most important factor is the infiltrating method. When compare the fitted value with the actual value, it is clear that when the compressive strength is higher, the fitting error will be smaller.
Practical implications
The research will have extensive applicability and practical significance for powder-based additive manufacturing.
Originality/value
The impact of the infiltrating-related post-processing on the performance of 3DP technology is easy to be ignored, which is fully taken into consideration in this paper. Both macroscopic and microscopic methods are conducted to explore, which can better explain the mechanical performance of the parts. Furthermore, as a small-sample method, PLS is used for influencing factors analysis. The variable importance in the projection index can explain the influencing degree of each parameter.
Based on Reissner’s mixed variational theorem, a weak-form formulation of finite layer methods is developed for the three-dimensional coupled thermo-electro-mechanical analysis of simply-supported, functionally graded elastic material plates integrated with surface-bonded piezoelectric layers and under thermal loads. The material properties of the functionally graded elastic material core are assumed to obey the power-law distributions varying through-the-thickness coordinate of the core according to the volume fractions of the constituents, and those of the functionally graded elastic material core and piezoelectric face sheets are also temperature dependent. The effective material properties of the functionally graded elastic material are estimated using the Mori-Tanaka scheme. Two different thermal conditions, i.e. the convection conditions and specified temperature conditions, on the top and bottom surfaces of the plate are considered. The accuracies and convergence rates of the finite layer methods with various orders used for expanding the elastic and electric variables in the thickness direction are assessed by comparing their solutions with the exact three-dimensional ones available in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.