Domain wall motion in ferroics, similar to dislocation motion in metals, can be tuned by well‐concepted microstructural elements. In demanding high‐power applications of piezoelectric materials, the domain wall motion is considered as a lossy hysteretic mechanism that should be restricted. Current applications for so‐called hard piezoelectrics are abundant and hinge on the use of an acceptor‐doping scheme. However, this mechanism features severe limitations due to enhanced mobility of oxygen vacancies at moderate temperatures. By analogy with metal technology, the authors present here a new solution for electroceramics, where precipitates are utilized to pin domain walls and improve piezoelectric properties. Through a sequence of sintering, nucleation, and precipitate growth, intragranular precipitates leading to a fine domain structure are developed as shown by transmission electron microscopy, piezoresponse force microscopy, and phase‐field simulation. This structure impedes the domain wall motion as elucidated by electromechanical characterization. As a result, the mechanical quality factor is increased by ≈50% and the hysteresis in electrostrain is suppressed considerably. This is even achieved with slightly increased piezoelectric coefficient and electromechanical coupling factor. This novel process can be smoothly implemented in industrial production processes and is accessible to simple laboratory experimentation for microstructure optimization and implementation in various ferroelectric systems.
High‐power piezoelectric applications are predicted to share approximately one‐third of the lead‐free piezoelectric ceramic market in 2024 with alkaline niobates as the primary competitor. To suppress self‐heating in high‐power devices due to mechanical loss when driven by large electric fields, piezoelectric hardening to restrict domain wall motion is required. In the present work, highly effective piezoelectric hardening via coherent plate‐like precipitates in a model system of the (Li,Na)NbO3 (LNN) solid solution delivers a reduction in losses, quantified as an electromechanical quality factor, by a factor of ten. Various thermal aging schemes are demonstrated to control the average size, number density, and location of the precipitates. The established properties are correlated with a detailed determination of short‐ and long‐range atomic structure by X‐ray diffraction and pair distribution function analysis, respectively, as well as microstructure determined by transmission electron microscopy. The impact of microstructure with precipitates on both small‐ and large‐field properties is also established. These results pave the way to implement precipitate hardening in piezoelectric materials, analogous to precipitate hardening in metals, broadening their use cases in applications.
Yttria-stabilized zirconia (YSZ) has become an indispensable solid electrolyte material in modern solid oxide fuel and electrolysis cells (SOFCs/SOECs) as well as oxygen sensors. The oxygen ionic conductivity of YSZ is among the highest known so far. For energy efficiency optimization of SOFCs and lowering the high-temperature degradation of electrodes, the oxygen ionic conductivity needs to be further enhanced. This would allow for a reduction in application temperature. Despite extensive regular point defect-doping strategies, this key issue remains unsolved. Here, we investigate the role of mechanically induced dislocations (line-defects) on electrical conductivity and oxygen transport in bulk YSZ. An advanced mechanical deformation approach is employed to generate distinctly aligned dislocation-rich and -deficient regions. The in-depth electrical characterization of these regions exhibited highly conducting effects of dislocation-induced strain inside the bulk material. Furthermore, targeted oxygen tracer diffusion experiments prove enriched oxygen incorporation within the dislocation bundles. Therefore, the potential of mechanically induced dislocations is elucidated as a design element to tune the bulk ionic transport in YSZ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.