Hepatocellular carcinoma (HCC) is an aggressive cancer with a poor prognosis. The specific cellular gene alterations responsible for hepatocarcinogenesis are not well known. Cytokine-induced antiapoptotic molecule (CIAPIN1), a recently reported antiapoptotic molecule which plays an essential role in mouse definitive hematopoiesis, is considered a downstream effecter of the receptor tyrosine kinase–Ras signaling pathway. However, the exact function of this gene in tumors is not clear. In this study, we reported that CIAPIN1 is highly expressed in HCC as compared with non-tumor hepatic tissue (P < 0.05). We employed adenovirus-mediated RNA interference technique to knock down CIAPIN1 expression in HCC cells and observed its effects on HCC cell growth in vitro and in vivo. Among the four HCC and one normal human liver cell lines we analyzed, CIAPIN1 was highly expressed in HCC cells. Knock down of CIAPIN1 could inhibit HCC cell proliferation by inhibiting the cell cycle S-phase entry. Soft agar colony formation assay indicated that the colony-forming ability of SMMC-7721 cells decreased by ∼70% after adenovirus AdH1-small interfering RNA (siRNA)/CIAPIN1 infection. In vivo experiments showed that adenovirus AdH1-siRNA/CIAPIN1 inhibited the tumorigenicity of SMMC-7721 cells and significantly suppressed tumor growth when injected directly into tumors. These results suggest that knock down of CIAPIN1 by adenovirus-delivered siRNA may be a potential therapeutic strategy for treatment of HCC in which CIAPIN1 is overexpressed.
Nanoparticles (NPs) are confronted with limited and disappointing delivery efficiency in tumors clinically. The tumor extracellular matrix (ECM), whose physical traits have recently been recognized as new hallmarks of cancer, forms a main steric obstacle for NP diffusion, yet the role of tumor ECM physical traits in NP diffusion remains largely unexplored. Here, we characterized the physical properties of clinical gastric tumor samples and observed limited distribution of NPs in decellularized tumor tissues. We also performed molecular dynamics simulations and in vitro hydrogel experiments through single-particle tracking to investigate the diffusion mechanism of NPs and understand the influence of tumor ECM physical properties on NP diffusion both individually and collectively. Furthermore, we developed an estimation matrix model with evaluation scores of NP diffusion efficiency through comprehensive analyses of the data. Thus, beyond finding that loose and soft ECM with aligned structure contribute to efficient diffusion, we now have a systemic model to predict NP diffusion efficiency based on ECM physical traits and provide critical guidance for personalized tumor diagnosis and treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.