Very early age (0–20 h) concrete hydration is a complicated chemical reaction. During the very early age period, the concrete condition dramatically changes from liquid state to solid state. This paper presents the authors’ recent research on monitoring very early age concrete hydration characterization by using piezoceramic based smart aggregates. The smart aggregate (SA) transducer is designed as a sandwich structure using two marble blocks and a pre-soldered lead zirconate titanate (PZT) patch. Based on the electromechanical property of piezo materials, the PZT patches function as both actuators and sensors. In addition, the marble blocks provide reliable protection to the fragile PZT patch and develop the SA into a robust embedded actuator or sensor in the structure. The active-sensing approach, which involved a pair of smart aggregates with one as an actuator and the other one as a sensor, was applied in this paper’s experimental investigation of concrete hydration characterization monitoring. In order to completely understand the hydration condition of the inhomogeneous, over-cluttering, high-scattering characteristics of concrete (specifically of very early concrete), a swept sine wave and several constant frequency sine waves were chosen and produced by a function generator to excite the embedded actuating smart aggregate. The PZT vibration induced ultrasonic wave propagated through the concrete and was sent to the other smart aggregate sensor. The electrical signal transferred from the smart aggregate sensor was recorded during the test. As the concrete hydration reaction was occurring, the characteristic of the electrical signal continuously changed. This paper describes the successful investigation of the three states (the fluid state, the transition state, and the hardened state) of very early age concrete hydration based on classification of the received electrical signal. Specifically, the amplitude and frequency response of the electrical signal were of main interest. Both the swept sine wave and the constant frequency sine wave excitation methods presented the same conclusion on the three concrete states during the hydration, which enhances the reliability of the active-sensing approach for very early age concrete hydration monitoring.
A PZT-based smart aggregate (SA) for compressive seismic stress monitoring is proposed in this paper. The proposed SA consists of a piece of PZT (lead zirconate titanate) patch sandwiched between a pair of marble cubes through epoxy. A soft PZT is selected, rendering the SA as a potential actuator in active sensing. Finite element analysis (FEA) was conducted to investigate the stress distribution in the SA under compression, which is used for calculating its sensitivity to compressive stresses. With a commercially available charge amplifier, the frequency response of both the amplitude and the phase shift of the sensing system are investigated by applying the frequency sweep loading scheme on the proposed SA. The frequency ranges from 0.01 to 10 Hz, corresponding to the range of seismic frequency response of most building structures. The alternating load for evaluating SA sensitivity was applied by the servo-hydraulic machine. The lower limit of frequency response is determined to be 0.5 Hz. The depolarization process of the piezoelectric coefficient of the selected PZT material was investigated to decide the load-holding time in calibration tests. The degradation of the piezoelectric coefficient with a series of compressive pre-stresses from 4.8 to 24 MPa was evaluated, and the experimental results showed that the influence from the considered range of pre-stresses is negligible. Using a commercially available charge amplifier, the proposed SA-based sensing system can monitor the seismic stress of low- and middle-rise building structures under moderate earthquakes.
A lead zirconate titanate (PZT)-based smart aggregate (SA) is proposed for seismic shear stress monitoring in concrete structures. This SA uses a d15-mode PZT as the sensing element. A calibration test is designed in which a cyclic shear stress with a dominant frequency of the earthquake response spectrum is applied on the two opposite sides of the proposed SA using a specially designed loading mold. The test is repeated on six copies of the proposed SA. The maximum applied shear stress is larger than the shear strength of ordinary concrete to allow measurements during failure. The output voltage of the SA is experimentally verified as varying linearly with the applied stress in the loading range. The sensitivity of the proposed SA to the applied stress under the given boundary conditions is examined. The calibrated sensitivity value is then compared with the calculated value, which is obtained by computing the stress distribution in the SA using finite element analysis (FEA). The calculated values and the calibrated values are approximately the same, indicating that the established finite element (FE) model is reliable. Monotonic loading is also applied on the proposed SA to induce cracks between the SA and the loading mold, and the SA’s response to cracking processes is examined. It is found that the proposed SA underestimates the cracking process. This study demonstrates that the proposed SA can be used in monitoring the overall shear stress development process in concrete during a seismic event.
XML-based data dissemination networks are rapidly gaining momentum. In these networks XML content is routed from data producers to data consumers throughout an overlay network of content-based routers. Routing decisions are based on XPath expressions (XPEs) stored at each router. To enable efficient routing, while keeping the routing state small, we introduce an advertisement-based routing algorithm for XML content, present a novel data structure for managing XPEs, especially apt for the hierarchical nature of XPEs and XML, and develop several optimizations for reducing the number of XPEs required to manage the routing state. The experimental evaluation shows that our algorithms and optimizations reduce the routing table size by up to 90%, improve the routing time by roughly 85%, and reduce overall network traffic by about 35%. Experiments running on PlanetLab show the scalability of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.