Nonsyndromic orofacial cleft (NSOFC) is a severe birth defect that occurs early in embryonic development and includes the subtypes cleft palate only (CPO), cleft lip only (CLO) and cleft lip with cleft palate (CLP). Given a lack of specific genetic factor analysis for CPO and CLO, the present study aimed to dissect the landscape of genetic factors underlying the pathogenesis of these two subtypes using 6,986 cases and 10,165 controls. By combining a genome-wide association study (GWAS) for specific subtypes of CPO and CLO, as well as functional gene network and ontology pathway analysis, we identified 18 genes/loci that surpassed genome-wide significance (P < 5 × 10−8) responsible for NSOFC, including nine for CPO, seven for CLO, two for both conditions and four that contribute to the CLP subtype. Among these 18 genes/loci, 14 are novel and identified in this study and 12 contain developmental transcription factors (TFs), suggesting that TFs are the key factors for the pathogenesis of NSOFC subtypes. Interestingly, we observed an opposite effect of the genetic variants in the IRF6 gene for CPO and CLO. Moreover, the gene expression dosage effect of IRF6 with two different alleles at the same single-nucleotide polymorphism (SNP) plays important roles in driving CPO or CLO. In addition, PAX9 is a key TF for CPO. Our findings define subtypes of NSOFC using genetic factors and their functional ontologies and provide a clue to improve their diagnosis and treatment in the future.
We investigated the status of the apolipoprotein E allele in 538 participants in the incidence phase of the ongoing Shanghai Survey of Dementia, including 103 demented subjects, 72 with mild cognitive impairment and 363 cognitively normal. The apo E epsilon 4 allele was present in 10.2% of control subjects and the allelic frequency did not change between ages 60 to 96 years. The apo E epsilon 4 allelic frequency was increased both in those wiht Alzheimer's disease (AD) (25.4%) and those with vascular dementia (VaD) (22.2%), but not in those with other dementing illnesses or the cognitively impaired. All of the subjects homozygous for apo E epsilon 4 were demented, three were diagnosed as having AD, and three met NINDS/AIREN criteria for VaD. The increased apo E epsilon 4 allelic frequency in clinically diagnosed VaD patients suggests that some of the infarcts are secondary to congophilic angiopathy. The adjusted odds ratio of developing AD in this community-derived study for persons with at least one apo E epsilon 4 allele was 4.1 (95% CI: 2.2, 7.7). Thus, the apo E epsilon 4 risk of developing AD in this Chinese cohort is similar to that in western community studies.
Schwannomas are rare and seldom extend into the anterior cranial fossa. Herein, we report a case of schwannoma arising from the olfactory groove in a 16-year-old girl who presented with generalized seizures without olfactory dysfunction or other neurologic deficits. Computerized tomography (CT) scan showed a large mass with abundant calcification located in the olfactory groove, which was confirmed as a schwannoma by histology and totally resected via basal subfrontal approach. The presentation, imaging findings and histogenesis of the tumor are discussed along with a review of the pertinent literature.
Growing evidence suggests the existence of new antibiotic resistance mechanisms. Recent studies have revealed that quorum-quenching enzymes, such as MacQ, are involved in both antibiotic resistance and cell-cell communication. Furthermore, some small bacterial regulatory RNAs, classified into RNA attenuators and small RNAs, modulate the expression of resistance genes. For example, small RNA sprX, can shape bacterial resistance to glycopeptide antibiotics via specific downregulation of protein SpoVG. Moreover, some bacterial lipocalins capture antibiotics in the extracellular space, contributing to severe multidrug resistance. But this defense mechanism may be influenced by Agr-regulated toxins and liposoluble vitamins. Outer membrane porin proteins and efflux pumps can influence intracellular concentrations of antibiotics. Alterations in target enzymes or antibiotics prevent binding to targets, which act to confer high levels of resistance in respiratory/oral bacteria. As described recently, horizontal gene transfer, including conjugation, transduction and transformation, is common in respiratory/oral microflora. Many conjugative transposons and plasmids discovered to date encode antibiotic resistance proteins and can be transferred from donor bacteria to transient recipient bacteria. New classes of mobile genetic elements are also being identified. For example, nucleic acids that circulate in the bloodstream (circulating nucleic acids) can integrate into the host cell genome by up-regulation of DNA damage and repair pathways. With multidrug resistant bacteria on the rise, new drugs have been developed to combate bacterial antibiotic resistance, such as innate defense regulators, reactive oxygen species and microbial volatile compounds. This review summaries various aspects and mechanisms of antibiotic resistance in the respiratory/oral microbiota. A better understanding of these mechanisms will facilitate minimization of the emergence of antibiotic resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.