Covalent organic frameworks (COFs) are of interest for many applications originating from their mechanically robust architectures, low density, and high accessible surface area. Depending on their linkers and binding patterns, COFs mainly exhibit microporosity, even though COFs with small mesopores have been reported using extended linkers. For some applications, especially when fast mass transport is desired, hierarchical pore structures are an ideal solution, e.g., with small micropores providing large surface areas and larger macropores providing unhindered transport to and from the materials surface. Herein, we have developed a facile strategy for the fabrication of crystalline COFs with inherent microporosity and template-induced, homogeneously distributed, yet tunable, macroporous structures. This method has been successfully applied to obtain various β-ketoenamine-based COFs with interconnected macro–microporous structures. The as-synthesized macroporous COFs preserve high crystallinity with high specific surface area. When bipyridine moieties are introduced into the COF backbone, metals such as Co2+ can be coordinated within the hierarchical pore structure (macro-TpBpy-Co). The resulting macro-TpBpy-Co exhibits a high oxygen evolution reaction (OER) activity, which is much improved compared to the purely microporous COF with a competitive overpotential of 380 mV at 10 mA/cm2. This can be attributed to the improved mass diffusion properties in the hierarchically porous COF structures, together with the easily accessible active Co2+-bipyridine sites.
carrier with an extremely high energy density (approximately 142 MJ kg −1 ) and zero-carbon content, has been regarded as a promising clean fuel. [1,2] In this context, electrochemical water splitting, which converts electricity into storable hydrogen, is a viable and efficient solution to mitigate severe energy shortages and greenhouse gas emissions. [3] Among these strategies, hydrogen and oxygen evolution reactions, which occur on the cathode and anode, respectively, in a water electrolyzer, are considered as two critical half-reactions of the water-splitting process. [4] Theoretically, water splitting requires a thermodynamic Gibbs free energy (ΔG) of approximately 237.2 kJ mol −1 , corresponding to a standard potential (ΔE) of 1.23 V versus a reversible hydrogen electrode (RHE), which allows the thermodynamically uphill reaction to occur in the electrolyzer. [5] However, the unfavorable thermodynamics and resulting large overpotential are the main barriers to the scalable implementation of water electrolysis for hydrogen generation. [6,7] Currently, noble metal-based electrocatalysts exhibit the most efficient activity for water splitting, particularly Pt-based hydrogen evolution reaction (HER) catalysts and Ir/Ru-based oxygen evolution reaction (OER) catalysts. [8,9] Nevertheless, the scarcity and high price of precious metals severely impede their widespread use in commercial water-splitting applications. Taking these limitations into Electrochemical water splitting has attracted significant attention as a key pathway for the development of renewable energy systems. Fabricating efficient electrocatalysts for these processes is intensely desired to reduce their overpotentials and facilitate practical applications. Recently, metal-organic framework (MOF) nanoarchitectures featuring ultrahigh surface areas, tunable nanostructures, and excellent porosities have emerged as promising materials for the development of highly active catalysts for electrochemical water splitting. Herein, the most pivotal advances in recent research on engineering MOF nanoarchitectures for efficient electrochemical water splitting are presented. First, the design of catalytic centers for MOF-based/derived electrocatalysts is summarized and compared from the aspects of chemical composition optimization and structural functionalization at the atomic and molecular levels. Subsequently, the fast-growing breakthroughs in catalytic activities, identification of highly active sites, and fundamental mechanisms are thoroughly discussed. Finally, a comprehensive commentary on the current primary challenges and future perspectives in water splitting and its commercialization for hydrogen production is provided. Hereby, new insights into the synthetic principles and electrocatalysis for designing MOF nanoarchitectures for the practical utilization of water splitting are offered, thus further promoting their future prosperity for a wide range of applications.
Lithium ion batteries (LIBs) have attracted great attention due to their high energy density, low maintenance requirements, and relatively low self-discharge. Since the electrode materials hold the key for the electrochemical performance of LIBs, the design and synthesis of unconventional electrode materials with high lithium-storage capacities are the current focus in LIB research. In the last few years, a great deal of effort has been directed toward graphene as the electrode material for LIBs owing to its high intrinsic surface area, high electrical conductivity, and good compatibility with other electrochemically active components. This review paper outlines the componential and structural design for graphene-based hybrids in LIBs with enhanced electrochemical performance. The typical fabrication methods and structure-property relationships of these hybrids are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.