Coronavirus disease 2019 (COVID-19) is a global pandemic posing significant health risks. The diagnostic test sensitivity of COVID-19 is limited due to irregularities in specimen handling. We propose a deep learning framework that identifies COVID-19 from medical images as an auxiliary testing method to improve diagnostic sensitivity. We use pseudo-coloring methods and a platform for annotating X-ray and computed tomography images to train the convolutional neural network, which achieves a performance similar to that of experts and provides high scores for multiple statistical indices (F1 scores > 96.72% (0.9307, 0.9890) and specificity >99.33% (0.9792, 1.0000)). Heatmaps are used to visualize the salient features extracted by the neural network. The neural network-based regression provides strong correlations between the lesion areas in the images and five clinical indicators, resulting in high accuracy of the classification framework. The proposed method represents a potential computer-aided diagnosis method for COVID-19 in clinical practice.
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease causing dementia and poses significant health risks to middle-aged and elderly people. Brain magnetic resonance imaging (MRI) is the most widely used diagnostic method for AD. However, it is challenging to collect sufficient brain imaging data with high-quality annotations. Weakly supervised learning (WSL) is a machine learning technique aimed at learning effective feature representation from limited or low-quality annotations. In this paper, we propose a WSL-based deep learning (DL) framework (ADGNET) consisting of a backbone network with an attention mechanism and a task network for simultaneous image classification and image reconstruction to identify and classify AD using limited annotations. The ADGNET achieves excellent performance based on six evaluation metrics (Kappa, sensitivity, specificity, precision, accuracy, F1-score) on two brain MRI datasets (2D MRI and 3D MRI data) using fine-tuning with only 20% of the labels from both datasets. The ADGNET has an F1-score of 99.61% and sensitivity is 99.69%, outperforming two state-of-the-art models (ResNext WSL and SimCLR). The proposed method represents a potential WSL-based computer-aided diagnosis method for AD in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.