Road networks play a fundamental role in our daily life. It is of importance to extract the road structure in a timely and precise manner with the rapid evolution of urban road structure. Recently, road network extraction using deep learning has become an effective and popular method. The main shortcoming of the road extraction using deep learning methods lies in the fact that there is a need for a large amount of training datasets. Additionally, the datasets need to be elaborately annotated, which is usually labor-intensive and time-consuming; thus, lots of weak annotations (such as the centerline from OpenStreetMap) have accumulated over the past a few decades. To make full use of the weak annotations, we propose a novel semi-weakly supervised method based on adversarial learning to extract road networks from remote sensing imagery. Our method uses a small set of pixel-wise annotated data and a large amount of weakly annotated data for training. The experimental results show that the proposed approach can achieve a maintained performance compared with the methods that use a large number of full pixel-wise annotations while using less fully annotated data.
Semantic segmentation of remote sensing (RS) images, which is a fundamental research topic, classifies each pixel in an image. It plays an essential role in many downstream RS areas, such as land-cover mapping, road extraction, traffic monitoring, and so on. Recently, although deep-learning-based methods have shown their dominance in automatic semantic segmentation of RS imagery, the performance of these existing methods has relied heavily on large amounts of high-quality training data, which are usually hard to obtain in practice. Moreover, human-in-the-loop semantic segmentation of RS imagery cannot be completely replaced by automatic segmentation models, since automatic models are prone to error in some complex scenarios. To address these issues, in this paper, we propose an improved, smart, and interactive segmentation model, DRE-Net, for RS images. The proposed model facilitates humans’ performance of segmentation by simply clicking a mouse. Firstly, a dynamic radius-encoding (DRE) algorithm is designed to distinguish the purpose of each click, such as a click for the selection of a segmentation outline or for fine-tuning. Secondly, we propose an incremental training strategy to cause the proposed model not only to converge quickly, but also to obtain refined segmentation results. Finally, we conducted comprehensive experiments on the Potsdam and Vaihingen datasets and achieved 9.75% and 7.03% improvements in NoC95 compared to the state-of-the-art results, respectively. In addition, our DRE-Net can improve the convergence and generalization of a network with a fast inference speed.
A new three-dimensional (3D) nonlinear guidance law is proposed and developed for bank-to-turn (BTT) with motion coupling. First of all, the 3D guidance model is established. In detail, the line-of-sight (LOS) rate model is established with the vector description method, and the kinematics model is divided into three terms of pitching, swerving and coupling, then by using the twist-based method, the LOS direction changing model is built for designing the guidance law with terminal angular constraints. Secondly, the 3D guidance laws are designed with Lyapunov theory, corresponding to no terminal constraints and terminal constraints, respectively. And finally, the simulation results show that the proposed guidance law can effectively satisfy the guidance precision requirements of BTT missile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.