Two-dimensional materials provide extraordinary opportunities for exploring phenomena arising in atomically thin crystals. Beginning with the first isolation of graphene, mechanical exfoliation has been a key to provide high-quality two-dimensional materials, but despite improvements it is still limited in yield, lateral size and contamination. Here we introduce a contamination-free, one-step and universal Au-assisted mechanical exfoliation method and demonstrate its effectiveness by isolating 40 types of single-crystalline monolayers, including elemental two-dimensional crystals, metal-dichalcogenides, magnets and superconductors. Most of them are of millimeter-size and high-quality, as shown by transfer-free measurements of electron microscopy, photo spectroscopies and electrical transport. Large suspended two-dimensional crystals and heterojunctions were also prepared with high-yield. Enhanced adhesion between the crystals and the substrates enables such efficient exfoliation, for which we identify a gold-assisted exfoliation method that underpins a universal route for producing large-area monolayers and thus supports studies of fundamental properties and potential application of two-dimensional materials.
The thermal expansion coefficient is an important thermal parameter that influences the performance of nanodevices based on two-dimensional materials. To obtain the thermal expansion coefficient of few-layer MoS2, suspended MoS2 and supported MoS2 were systematically investigated using Raman spectroscopy in the temperature range from 77 to 557 K. The temperature-dependent evolution of the Raman frequency shift for suspended MoS2 exhibited prominent differences from that for supported MoS2, obviously demonstrating the effect due to the thermal expansion coefficient mismatch between MoS2 and the substrate. The intrinsic thermal expansion coefficients of MoS2 with different numbers of layers were calculated. Interestingly, negative thermal expansion coefficients were obtained below 175 K, which was attributed to the bending vibrations in the MoS2 layer during cooling. Our results demonstrate that Raman spectroscopy is a feasible tool for investigating the thermal properties of few-layer MoS2 and will provide useful information for its further application in photoelectronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.