The nanometer-scaled pore systems of gas shale reservoirs have a prominent contribution for gas storage. To obtain information about the characteristics of the nanopore structure within lacustrine organic-rich shales during their thermal evolution, artificial shale samples with different thermal maturities were obtained from a hydrous pyrolysis experiment. Nitrogen adsorption, field emission scanning electron microscopy, and porosity tests were used to investigate the characteristic pore structures of lacustrine shales with different thermal maturities from the Minhe Basin. The results show that the total organic carbon content decreased from 41.89% (unheated) to 27.7% (370 C) and that organic pores, intragranular pores of pyrite, and intergranular pores of clay minerals began to form with an increase in the simulated temperature and pressure. The porosity increased from 3.57% (unheated) to 26.09% (350 C) and then decreased to 20% (370 C) on the whole. The pore sizes were distributed from 1.7 to 500 nm, and the average pore diameter first showed a decreasing trend and then an increasing trend. The cumulative pore volume and cumulative specific surface area both presented a slowly increasing trend from an unheated status to 325 C, exhibited a rapid increase at 350 C, and then showed a slow increase at 370 C. This study could provide a reference for the exploration of shale gas in lacustrine shales with different thermal maturities.
WRINKLED 1 (WRI1), a member of the AP2/EREBP class of transcription factors, regulates carbon allocation between the glycolytic and fatty acid biosynthetic pathways and plays important roles in other biological events. Previous studies have suggested that post-translational modifications and interacting partners modulate the activity of WRI1. We systematically summarised the structure of WRI1 as well as its molecular interactions during transcription and translation in plants. This work elucidates the genetic evolution and regulatory functions of WRI1 at the molecular level and describes a new pathway involving WRI1 that can be used to produce triacylglycerols (TAGs) in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.