Background Pure ground-glass nodules (pGGNs) with pleural contact (P-pGGNs) comprise not only invasive adenocarcinoma (IAC), but also minimally invasive adenocarcinoma (MIA). Radiomics recognizes complex patterns in imaging data by extracting high-throughput features of intra-tumor heterogeneity in a non-invasive manner. In this study, we sought to develop and validate a radiomics signature to identify IAC and MIA presented as P-pGGNs. Methods In total, 100 patients with P-pGGNs (69 training samples and 31 testing samples) were retrospectively enrolled from December 2012 to May 2018. Imaging and clinical findings were also analyzed. In total, 106 radiomics features were extracted from the 3D region of interest (ROI) using computed tomography (CT) imaging. Univariate analyses were used to identify independent risk factors for IAC. The least absolute shrinkage and selection operator (LASSO) method with 10-fold cross-validation was used to generate predictive features to build a radiomics signature. Receiver-operator characteristic (ROC) curves and calibration curves were used to evaluate the predictive accuracy of the radiomics signature. Decision curve analyses (DCA) were also conducted to evaluate whether the radiomics signature was sufficiently robust for clinical practice. Results Univariate analysis showed significant differences between MIA (N = 47) and IAC (N = 53) groups in terms of patient age, lobulation signs, spiculate margins, tumor size, CT values and relative CT values (all P < 0.05). ROC curve analysis showed, when MIA was identified from IAC, that the critical value of tumor length diameter (TLD) was1.39 cm and the area under the ROC curve (AUC) was 0.724 (sensitivity = 0.792, specificity = 0.553). The critical CT value on the largest axial plane (CT-LAP) was − 597.45 HU, and the AUC was 0.666 (sensitivity = 0.698, specificity= 0.638). The radiomics signature consisted of seven features and exhibited a good discriminative performance between IAC and MIA, with an AUC of 0.892 (sensitivity = 0.811, specificity 0.719), and 0.862 (sensitivity = 0.625, specificity = 0.800) in training and testing samples, respectively. Conclusions Our radiomics signature exhibited good discriminative performance in differentiating IAC from MIA in P-pGGNs, and may offer a crucial reference point for follow-up and selective surgical management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.