In this work, based on mesoporous silica containers (MSNs) with the programmed enzyme-free DNA assembly amplification of catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR), an ultrasensitive electrochemical sensing platform with low background is developed for the detection of microRNA (miRNA). Herein, the electrochemical reporter methylene blue (MB) was sealed in the pores of MSNs by the double-stranded DNA (dsDNA) gate of hairpin DNA H1 and anchor DNA. In the absence of target, neither the CHA nor the HCR process happened, which enabled a low background. After target was added, DNA H1 was displaced from the MSNs surface and participated in the CHA process with the assistance of hairpin DNA H2, which accelerated the release of MB from the MSNs pore. Meanwhile, the CHA products H1−H2 were hybridized with the capture probes (SH−CP) on the electrode surface, which further initiated the HCR process. The released MB from the MSNs will effectively intercalate into long dsDNA polymers of HCR products, resulting in a significant electrochemical response. Taking miRNA-21 as the model target, the proposed sensing platform achieves a satisfactory detection limit down to 0.037 fM, which is lower than that of electrochemical assay with amplification methods. In addition, the strategy shows good selectivity against other miRNAs and is capable in practical analytes. Benefitting from the features of being label-free and enzyme-free and having low background, high sensitivity, and selectivity, this strategy shows great potential in bioanalysis and clinical diagnostics.
Herein a low background cascade signal amplification electrochemical sensing platform has been proposed for the ultrasensitive detection of mRNA (mRNA) by coupling the target-activated hybridization chain reaction and electroactive cargo release from mesoporous silica nanocontainers (MSNs). In this sensing platform, the 5′-phosphate-terminated DNA (5′-PO 4 cDNA) complement to target mRNA is hybridized with the trigger DNA and anchor DNA on the surface of the MSNs, aiming at forming a double-stranded DNA gate molecule and sealing the methylene blue (MB) in the inner pores of the MSNs. In the presence of target mRNA, the 5′-PO 4 cDNA is displaced from the MSNs and competitively hybridizes with mRNA, which led to the liberation of the trigger DNA and the opening of the MSNs pore. The liberated trigger DNA can be then immobilized onto the electrode surface through hybridization with the capture DNA, triggering HCR on the electrode surface. At the same time, the MB released from the MSNs will selectively intercalate into the HCR long dsDNA polymers, giving rise to significant electrochemical response. In addition, due to the λ-exonuclease (λ-Exo) cleavage reaction-assisted target recycling, more amounts of trigger DNA will be liberated and trigger HCR, and numerous MB are uncapped and intercalate into the HCR products. As proof of concept, thymidine kinase 1 (TK1) mRNA was used as a model target. Featured with amplification efficiency, label-free capability, and low background signal, the strategy could quantitatively detect TK1 mRNA down to 2.0 aM with a linear calibration range from 0.1 fM to 1 pM. We have also demonstrated the practical application of our proposed sensing platform for detecting TK1 mRNA in real samples, opening up new avenues for highly sensitive quantification of biomarkers in bioanalysis and clinical diagnosis.
An in situ activable “nanocluster-bomb” detonated by endogenous overexpressing legumain is fabricated for contrast enhanced cancer imaging and effective gene/chemo-therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.