In practice, a disease process might involve three ordinal diagnostic stages: the normal healthy stage, the early stage of the disease, and the stage of full development of the disease. Early detection is critical for some diseases since it often means an optimal time window for therapeutic treatments of the diseases. In this study, we propose a new influence function-based empirical likelihood method and Bayesian empirical likelihood methods to construct confidence/credible intervals for the sensitivity of a test to patients in the early diseased stage given a specificity and a sensitivity of the test to patients in the fully diseased stage. Numerical studies are performed to compare the finite sample performances of the proposed approaches with existing methods. The proposed methods are shown to outperform existing methods in terms of coverage probability. A real dataset from the Alzheimer's Disease Neuroimaging Initiative (ANDI) is used to illustrate the proposed methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.