In this paper, a third-order weighted essentially non-oscillatory (WENO) scheme is developed for hyperbolic conservation laws on unstructured quadrilateral and triangular meshes. As a starting point, a general stencil is selected for the cell with any local topology, and a unified linear scheme can be constructed. However, in the traditional WENO scheme on unstructured meshes, the very large and negative weights may appear for the mesh with lower quality, and the very large weights make the WENO scheme unstable even for the smooth tests. In the current scheme, an optimization approach is given to deal with the very large linear weights, and the splitting technique is considered to deal with the negative weights obtained by the optimization approach. The non-linear weight with a new smooth indicator is proposed as well, in which the local mesh quality and discontinuities of solutions are taken into account simultaneously. Numerical tests are presented to validate the current scheme. The expected convergence rate of accuracy is obtained, and the absolute value of error is not affected by mesh quality. The numerical tests with strong discontinuities validate the robustness of current WENO scheme.
With the use of temporal derivative of flux function, a two-stage temporal discretization has been recently proposed in the design of fourth-order schemes based on the generalized Riemann problem (GRP) [21] and gas-kinetic scheme (GKS) [28]. In this paper, the fourth-order gas-kinetic scheme will be extended to solve the compressible multicomponent flow equations, where the two-stage temporal discretization and fifth-order WENO reconstruction will be used in the construction of the scheme. Based on the simplified two-species BGK model [41], the coupled Euler equations for individual species will be solved. Each component has its individual gas distribution function and the equilibrium states for each component are coupled by the physical requirements of total momentum and energy conservation in particle collisions. The second-order flux function is used to achieve the fourth-order temporal accuracy, and the robustness is as good as the second-order schemes. At the same time, the source terms, such as the gravitational force and the chemical reaction, will be explicitly included in the two-stage temporal discretization through their temporal derivatives. Many numerical tests from the shock-bubble interaction to ZND detonative waves are presented to validate the current approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.