Hyperuricaemia (HUA) significantly increases the risk of metabolic syndrome and is strongly associated with the increased prevalence of high serum free fatty acids (FFAs) and insulin resistance. However, the underlying mechanisms are not well established, especially the effect of uric acid (UA) on adipose tissue, a vital organ in regulating whole-body energy and FFA homeostasis. In the present study, we noticed that adipocytes from the white adipose tissue of patients with HUA were hypertrophied and had decreased UCP1 expression. To test the effects of UA on adipose tissue, we built both in vitro and in vivo HUA models and elucidated that a high level of UA could induce hypertrophy of adipocytes, inhibit their hyperplasia and reduce their beige-like characteristics. According to mRNA-sequencing analysis, UA significantly decreased the expression of leptin in adipocytes, which was closely related to fatty acid metabolism and the AMPK signalling pathway, as indicated by KEGG pathway analysis. Moreover, lowering UA using benzbromarone (a uricosuric agent) or metformin-induced activation of AMPK expression significantly attenuated UA-induced FFA metabolism impairment and adipose beiging suppression, which subsequently alleviated serum FFA elevation and insulin resistance in HUA mice. Taken together, these observations confirm that UA is involved in the aetiology of metabolic abnormalities in adipose tissue by regulating leptin-AMPK pathway, and metformin could lessen HUA-induced serum FFA elevation and insulin resistance by improving adipose tissue function via AMPK activation. Therefore, metformin could represent a novel treatment strategy for HUA-related metabolic disorders.
BackgroundThe prevalence of atrial fibrillation (AF) is significantly higher in rheumatoid arthritis (RA) patients, but the underlying mechanisms remain poorly understood. The goal of this study was to assess the effects of RA on AF susceptibility and atrial arrhythmogenic remodeling in a rat model of RA.Methods and ResultsCollagen‐induced arthritis was induced in rats by immunization with type II collagen in Freund's incomplete adjuvant. Among the rats that developed arthritis, AF susceptibility and atrial remodeling were examined 8 weeks after the primary immunization. AF inducibility and duration were substantially increased in collagen‐induced arthritis rats, and AF duration was significantly and positively correlated with the serum IL‐6 and TNF‐α levels. Rats with collagen‐induced arthritis showed prolonged atrial conduction time with no changes in the atrial effective refractory period. Atrial conduction delay was accompanied by significantly increased atrial fibrosis. In addition, atrial structural and autonomic remodeling, including left atrial dilation, apoptosis and autophagy of atrial myocytes, and atrial heterogeneous sympathetic hyperinnervation, was observed. Interestingly, we found that collagen‐induced arthritis had no significant effects on connexins, Nav1.5, and the main ion channels' protein expressions in atria.ConclusionsWe demonstrated that RA increased AF susceptibility by inducing AF‐promoting atrial remodeling. This study may provide insights into mechanisms underlying RA‐induced AF and validate a model that is suitable for further mechanistic and therapeutic exploration.
Background Whether chronic obstructive sleep apnea ( OSA ) could promote epicardial adipose tissue ( EAT ) secretion of profibrotic adipokines, and thereby contribute to atrial fibrosis, and the potential therapeutic effects of metoprolol remain unknown. Methods and Results A chronic OSA canine model was established by repeatedly clamping the endotracheal tube for and then reopening it for 4 hours every other day for 12 weeks. In a metoprolol treatment group, metoprolol succinate was administered daily for 12 weeks. The EAT infiltration and left atrial fibrosis were examined. The expressions of adipokines secreted by EAT and hypoxic 3T3‐L1 adipocytes were detected. The changes in collagen synthesis, transforming growth factor‐β1 expression, and cell differentiation and proliferation in cardiac fibroblasts induced by hypoxic 3T3‐L1 adipocyte‐derived conditioned medium were further analyzed. Chronic OSA induced infiltration of EAT into the left atrium. OSA enhanced the profibrotic effect of EAT on the adjacent atrial myocardium. Moreover, OSA induced profibrotic cytokine secretion from EAT . We also found that hypoxia induced adipokine secretion in cultured adipocytes, and the medium conditioned by the hypoxic adipocytes increased collagen and transforming growth factor‐β1 protein expression and cell proliferation of cardiac fibroblasts. More importantly, metoprolol attenuated infiltration of EAT and alleviated the profibrotic effect of EAT by inhibiting adipokine secretion. Metoprolol also inhibited hypoxia‐induced adipokine secretion in adipocytes and thereby blocked the hypoxic adipocyte–derived conditioned medium–induced fibrotic response of cardiac fibroblasts. Conclusions Chronic OSA enhanced the profibrotic effect of EAT on the neighboring atrial myocardium by stimulating the secretion of profibrotic adipokines from EAT , which was significantly attenuated by metoprolol. This study gives insights into mechanisms underlying OSA ‐induced atrial fibrillation and also provides experimental evidence for the protective effects of metoprolol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.