With the rapid development of portable electronics, such as e-paper and other flexible devices, practical power sources with ultrathin geometries become an important prerequisite, in which supercapacitors with in-plane configurations are recently emerging as a favorable and competitive candidate. As is known, electrode materials with two-dimensional (2D) permeable channels, high-conductivity structural scaffolds, and high specific surface areas are the indispensible requirements for the development of in-plane supercapacitors with superior performance, while it is difficult for the presently available inorganic materials to make the best in all aspects. In this sense, vanadium disulfide (VS(2)) presents an ideal material platform due to its synergic properties of metallic nature and exfoliative characteristic brought by the conducting S-V-S layers stacked up by weak van der Waals interlayer interactions, offering great potential as high-performance in-plane supercapacitor electrodes. Herein, we developed a unique ammonia-assisted strategy to exfoliate bulk VS(2) flakes into ultrathin VS(2) nanosheets stacked with less than five S-V-S single layers, representing a brand new two-dimensional material having metallic behavior aside from graphene. Moreover, highly conductive VS(2) thin films were successfully assembled for constructing the electrodes of in-plane supercapacitors. As is expected, a specific capacitance of 4760 μF/cm(2) was realized here in a 150 nm in-plane configuration, of which no obvious degradation was observed even after 1000 charge/discharge cycles, offering as a new in-plane supercapacitor with high performance based on quasi-two-dimensional materials.
Inorganic graphene analogues (IGAs) are a conceptually new class of materials with attractive applications in next-generation flexible and transparent nanodevices. However, their species are only limited to layered compounds, and the difficulty in extension to nonlayered compounds hampers their widespread applicability. Here we report the fabrication of large-area freestanding single layers of non-layered Znse with four-atomic thickness, using a strategy involving a lamellar hybrid intermediate. Their surface distortion, revealed by means of synchrotron radiation X-ray absorption fine structure spectroscopy, is shown to give rise to a unique electronic structure and an excellent structural stability, thus determining an enhanced solar water splitting efficiency and photostability. The Znse single layers exhibit a photocurrent density of 2.14 mA cm − 2 at 0.72 V versus Ag/AgCl under 300 W Xe lamp irradiation, 195 times higher than that of bulk counterpart. This work opens the door for extending atomically thick IGAs to non-layered compounds and holds promise for a wealth of innovative applications.
Utilizing a thin film of VS(2) ultrathin nanosheets with giant and fast moisture responsiveness, a brand-new model of moisture-based positioning interface is put forward here, by which not only the 2D position information of finger tips can be acquired, but also the relative height can be detected as the third dimensionality, representing a promising platform for advanced man-machine interactive systems.
As a conceptually new class of two-dimensional (2D) materials, the ultrathin nanosheets as inorganic graphene analogues (IGAs) play an increasingly vital role in the new-generation electronics. However, the relatively low electrical conductivity of inorganic ultrathin nanosheets in current stage significantly hampered their conducting electrode applications in constructing nanodevices. We developed the unprecedentedly high electrical conductivity in inorganic ultrathin nanosheets. The hydric titanium disulfide (HTS) ultrathin nanosheets, as a new IGAs, exhibit the exclusively high electrical conductivity of 6.76 × 10(4) S/m at room temperature, which is superior to indium tin oxide (1.9 × 10(4) S/m), recording the best value in the solution assembled 2D thin films of both graphene (5.5 × 10(4) S/m) and inorganic graphene analogues (5.0 × 10(2) S/m). The modified hydrogen on S-Ti-S layers contributes additional electrons to the TiS2 layered frameworks, rendering the controllable electrical conductivity as well as the electron concentrations. Together with synergic advantages of the excellent mechanical flexibility, high stability, and stamp-transferrable properties, the HTS thin films show promising capability for being the next generation conducting electrode material in the nanodevice fields.
Recently, novel two-dimensional materials for solar water splitting have drawn enormous research attention for the interesting tunable electronic and optical properties. We investigate the geometry, electronic, and optical properties of the monolayer (ML) and multilayer Janus MoSSe with the first-principles calculations. We find that the ML Janus MoSSe is a semiconductor with a direct band gap of 2.14 eV, which is suitable for absorbing visual light efficiently. It also holds an appropriate band edge alignment with the water redox potentials. The biaxial strain could effectively modulate the electronic and optical properties of the ML MoSSe, from a direct semiconductor to the indirect one, even to be metal. As for the bilayer (BL) MoSSe, the stacking order could effectively affect the electronic, optical, and redox properties. The most stable stacking order is the A′B type, followed by the AA′, AA-SeSe, AA-SS, and AA-SSe stacking faults. For the BL MoSSe, they are all indirect semiconductors. The indirect band gap of the multilayer MoSSe decreases monotonously as the number of layers increases, maybe due to the quantum confinement effect and interaction between the layers. The appropriate optical and band alignment with the water redox potentials together with the rich modulation methods imply that MoSSe could be used as an efficient photocatalysist for the water splitting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.