The spatial arrangement of the epidermal growth factor receptor (EGFR) on the cellular plasma membrane is one of the prime factors that control its downstream signaling pathways and related functions. However, the molecular organization, which spans the scale from nanometers to micrometer-size clusters, has not been resolved in detail, mainly due to a lack of techniques with the required spatiotemporal resolution. Therefore, we used imaging total internal reflection-fluorescence correlation spectroscopy to investigate EGFR dynamics on live CHO-K1 plasma membranes in resting and ligand-bound states. In combination with the fluorescence correlation spectroscopy diffusion law, this provides information on the subresolution organization of EGFR on cell membranes. We found that overall EGFR organization is sensitive to both cholesterol and the actin cytoskeleton. EGFR in the resting state is partly trapped in cholesterol-containing domains, whereas another fraction exhibits cholesterol independent trapping on the membrane. Disruption of the cytoskeleton leads to a broader range of EGFR diffusion coefficients and a reduction of hop diffusion. In the ligand-bound state we found a dose-dependent behavior. At 10 ng/mL EGF the EGFR is endocytosed and recycled to the membrane, whereas diffusion and organization do not change significantly. At 100 ng/mL EGF the EGFR forms clusters, which are subsequently internalized, whereas outside the clusters diffusivity increases and the organization of the receptor remains unchanged. After disruption of cholesterol-containing domains or actin cytoskeleton, EGF induces microscopic EGFR clusters on the membrane and endocytosis is inhibited.
The action and interaction of membrane receptor proteins take place within the plasma membrane. The plasma membrane, however, is not a passive matrix. It rather takes an active role and regulates receptor distribution and function by its composition and the interaction of its lipid components with embedded and surrounding proteins. Furthermore, it is not a homogenous fluid but contains lipid and protein domains of various sizes and characteristic lifetimes which are important in regulating receptor function and signaling. The precise lateral organization of the plasma membrane, the differences between the inner and outer leaflet, and the influence of the cytoskeleton are still debated. Furthermore, there is a lack of comparisons of the organization and dynamics of the plasma membrane of different cell types. Therefore, we used four different specific membrane markers to test the lateral organization, the differences between the inner and outer membrane leaflet, and the influence of the cytoskeleton of up to five different cell lines, including Chinese hamster ovary (CHO-K1), Human cervical carcinoma (HeLa), neuroblastoma (SH-SY5Y), fibroblast (WI-38) and rat basophilic leukemia (RBL-2H3) cells by Imaging Total Internal Reflection (ITIR)-Fluorescence Correlation Spectroscopy (FCS). We measure diffusion in the temperature range of 298-310K to measure the Arrhenius activation energy (E) of diffusion and apply the FCS diffusion law to obtain information on the spatial organization of the probe molecules on the various cell membranes. Our results show clear differences of the FCS diffusion law and E for the different probes in dependence of their localization. These differences are similar in the outer and inner leaflet of the membrane. However, these values can differ significantly between different cell lines raising the question how molecular plasma membrane events measured in different cell lines can be compared. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova.
Formin is one of the two major classes of actin binding proteins (ABPs) with nucleation and polymerization activity. However, despite advances in our understanding of its biochemical activity, whether and how formins generate specific architecture of the actin cytoskeleton and function in a physiological context in vivo remain largely obscure. It is also unknown how actin filaments generated by formins interact with other ABPs in the cell. Here, we combine genetic manipulation of formins mammalian diaphanous homolog1 (mDia1) and 3 (mDia3) with superresolution microscopy and single-molecule imaging, and show that the formins mDia1 and mDia3 are dominantly expressed in Sertoli cells of mouse seminiferous tubule and together generate a highly dynamic cortical filamentous actin (F-actin) meshwork that is continuous with the contractile actomyosin bundles. Loss of mDia1/3 impaired these F-actin architectures, induced ectopic noncontractile espin1-containing F-actin bundles, and disrupted Sertoli cell–germ cell interaction, resulting in impaired spermatogenesis. These results together demonstrate the previously unsuspected mDia-dependent regulatory mechanism of cortical F-actin that is indispensable for mammalian sperm development and male fertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.