Ferroelectric domain walls (DWs) of perovskite oxide materials, which can be written and erased by an external electric field, offer the possibility to dynamically manipulate phonon scattering and thermal flux behavior. Different from previous ferroelectric materials, such as BaTiO3, PbTiO3, etc., with an immutable and low Curie temperature. The Curie temperature of perovskite oxide KTa1−xNbxO3 (KTN) crystal can be tuned by altering the Ta/Nb ratio. In this work, the ferroelectric KTa0.6Nb0.4O3 (KTN) single crystal is obtained by the Czochralski method. To understand the role of ferroelectric domains in thermal transport behavior, we perform a nonequilibrium molecular dynamics (NEMD) calculation on monodomain and 90° DWs of KTN at room temperature. The calculated thermal conductivity of monodomain KTN is 9.84 W/(m·k), consistent with experimental results of 8.96 W/(m·k), and distinctly decreased with the number of DWs indicating the outstanding performance of the thermal switch. We further evaluate the thermal boundary resistance (TBR) of KTN DWs. An interfacial thermal resistance value of 2.29 × 10−9 K·m2/W and a large thermal switch ratio of 4.76 was obtained for a single DW of KTN. Our study shows that the ferroelectric KTN can provide great potential for the application of thermal switch at room temperature and over a broad temperature range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.