The sunflower (Helianthus annuus L.) seed and sprout is a ubiquitous crop with abundant nutrients and biological activities. This review summarizes the nutritional and medical importance currently recognized but under-researched concerning both seed and sprout highlighting the potential benefits of their phytochemical constituents including phenolic acids, flavonoids and tocopherols. Furthermore, the dynamic metabolite changes which occur during germination and biological activities are evaluated. The aim is to provide scientific evidence for improving the dietary and pharmaceutical applications of this common but popular crop as a functional food.
Sunflower see/ds ( Helianthus annuus L.) were roasted in an electric forced air oven for 15, 30, 45, and 60 min at 125, 135 and 145 °C. The effect of temperature and time on the flavor profile of the samples were evaluated by headspace solid-phase microextraction coupled with gas chromatography-mass spectroscopy (HS-SPME-GC-MS). Unsupervised Principle Component Analysis (PCA) and Agglomerative Hierarchical Clustering (AHC) multivariate statistical methods were used to visualize, group and classify the samples. 114 volatiles were identified in the roasted sunflower seeds (RSF), with terpenes (α-pinene, β-pinene), heterocyclic compounds (2-ethyl-3-methylpyrazine, 2,5-dimethylpyrazine, 2-ethyl-3,5-dimethylpyrazine, pyridine), aldehydes (2-methylbutanal, furfural, hexanal, phenylacetaldehyde), hydrocarbons (octane, 2-isobutyl-1,4-dimethylcyclohexane, 6,6-dimethylundecane), alcohol (3-methyl-2-propyl-1-pentanol), and γ-butyrolactone being dominant compounds. The content of most volatile compounds increased with increase in roasting temperature and time, such as esters, terpenes, pyrazines, aldehydes, ketones, and alcohols. 2,3-dimethylpyrazine, 2,5-dimethylpyrazine, 2-ethyl-3-methylpyrazine, and 2-ethyl-3,5-dimethylpyrazine contributed to be the major role in roast and nutty flavor of the roasted sunflower seeds. Roasting at 125 °C for 45 min was found to be the better condition for roasted sunflower seeds, which gave the lowest off-flavor and burnt tastes.
Sprouts with higher levels of nutrients and lower content of antinutritional substances have been gained a growing interest in the influence on the human's health. The study of the influence of germination temperature and time on the metabolite profiles of sunflower seed was studied by a metabolomics approach based on gas chromatography–flame ionization detection (GC‐FID). Samples were extracted and fractionated covering a wide range of lipophilic and hydrophilic spectra. A total of 90 metabolites were identified by comparison with reference standards. Principal component analysis (PCA) revealed distinct dynamic changes in metabolites with the germinating time. Heatmap and agglomerative hierarchical clustering analysis revealed the differences and similarities among the samples. The germinating sunflower seeds clustered into three major groups. For instance, group I with a high content of sterols, monosaccharide, and amino acids, indicating the germination process, resulted in an increase in amino acids and monosaccharide. Group II had a high content of FAME and FFA. Relative targeted quantification of metabolites visually depicted by heatmap showed decreases in fatty acid methyl ester (FAME) and free fatty acid (FFA), and increases in amino acids, α‐tocopherol, sterols, and γ‐aminobutyric acid (GABA) during germination. Sunflower seeds germinated at 25°C were better for the accumulation of α‐tocopherol, stigmasterol, leucine, proline, methionine, glutamine, and GABA compared with those at 35°C. These results help to better understand how germination conditions change the nutritional quality of germinated sunflower seeds from a metabolite profile view, allowing for the rational screening and usage of germinated sunflower seeds in the food industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.