Polyketide synthase 13 (Pks13) is an important enzyme found in Mycobacterium tuberculosis (M. tuberculosis) that condenses two fatty acyl chains to produce α-alkyl β-ketoesters, which in turn serve as the precursors for the synthesis of mycolic acids that are essential building blocks for maintaining the cell wall integrity of M. tuberculosis. Coumestan derivatives have recently been identified in our group as a new chemotype that exert their antitubercular effects via targeting of Pks13. These compounds were active on both drug-susceptible and drug-resistant strains of M. tuberculosis as well as showing low cytotoxicity to healthy cells and a promising selectivity profile. No cross-resistance was found between the coumestan derivatives and first-line TB drugs. Here we report that treatment of M. tuberculosis bacilli with 15 times the MIC of compound 1, an optimized lead coumestan compound, resulted in a colony forming unit (CFU) reduction from 6.0 log10 units to below the limit of detection (1.0 log10 units) per mL culture, demonstrating a bactericidal mechanism of action. Single dose (10 mg/kg) pharmacokinetic studies revealed favorable parameters with a relative bioavailability of 19.4%. In a mouse infection and chemotherapy model, treatment with 1 showed dose-dependent mono-therapeutic activity, whereas treatment with 1 in combination with rifampin showed clear synergistic effects. Together these data suggest that coumestan derivatives are promising agents for further TB drug development.
An efficient reversible fluorescent chemosensor, PEGFB, based on polyethylene glycol bearing a furan Schiff base unit has been successfully developed to sensitively detect Al3+ in pure aqueous solution.
Three-dimensional BaTiO3 (3D BT)/polyvinylidene fluoride (PVDF) composite dielectrics were fabricated by inversely introducing PVDF solution into a continuous 3D BT network, which was simply constructed via the sol-gel method using a cleanroom wiper as a template. The effect of the 3D BT microstructure and content on the dielectric and energy storage properties of the composites were explored. The results showed that 3D BT with a well-connected continuous network and moderate grain sizes could be easily obtained by calcining a barium source containing a wiper template at 1100 °C for 3 h. The as-fabricated 3D BT/PVDF composites with 21.1 wt% content of 3D BT (3DBT–2) exhibited the best comprehensive dielectric and energy storage performances. An enhanced dielectric constant of 25.3 at 100 Hz, which was 2.8 times higher than that of pure PVDF and 1.4 times superior to the conventional nano–BT/PVDF 25 wt% system, was achieved in addition with a low dielectric loss of 0.057 and a moderate dielectric breakdown strength of 73.8 kV·mm−1. In addition, the composite of 3DBT–2 exhibited the highest discharge energy density of 1.6 × 10−3 J·cm−3 under 3 kV·mm−1, which was nearly 4.5 times higher than that of neat PVDF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.