It is in a great demand to design a biodegradable, tumor microenvironment-sensitive drug delivery system to achieve safe and highly efficacious treatment of cancer. Herein, a novel pH/enzyme sensitive dendritic pdiHPMA-DOX conjugate was designed. diHPMA dendritic copolymer with GFLG segments in the branches which are sensitive to the intracellular enzyme of the tumor was prepared through RAFT polymerization. DOX was attached to dendritic diHP-MA polymer through a pH-sensitive hydrazone bond. The dendritic pdiHPMA-DOX conjugate self-assembled into nanoparticles with an ideal spherical shape at a mean size of 103 nm. The DOX attached to the polymeric carrier was released in an acidic environment, and the GFLG linker for synthesizing the dendritic vehicle with a high molecular weight (M W , 220 kDa) was cleaved to release low M W segments (<40 kDa) in the presence of cathepsin B. The dendritic polymeric conjugate was internalized via an endocytic pathway, and then released the anticancer drug, which led to significant cytotoxicity for tumors. The blood circulation time was profoundly prolonged, resulting in high accumulation of DOX into tumors. In vivo anti-tumor experiments with 4T1 tumor bearing mice demonstrated that the conjugate had a better antitumor efficacy in comparison with free DOX. Additionally, body weight measurements and histological examinations indicated that the conjugate showed low toxicities to normal tissues. This dendritic polymeric drug carrier in a response to intracellular enzyme and acidic pH of tumor tissue or cells holds great promise in tumor-targeted therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.