An aqueous enzymatic extraction method was developed to obtain free oil and protein hydrolysates from dehulled rapeseeds. The rapeseed slurry was treated by the chosen combination of pectinase, cellulase, and b-glucanase (4:1:1, v/v/v) at concentration of 2.5% (v/w) for 4 h. This was followed by sequential treatments consisting of alkaline extraction and an alkaline protease (Alcalase 2.4L) hydrolysis to both produce a protein hydrolysate product and demulsify the oil. Response surface methodology (RSM) was used to study and optimize the effects of the pH of the alkaline extraction (9.0, 10.0 and 11.0), the concentration of the Alcalase 2.4L (0.5, 1.0 and 1.5%, v/w), and the duration of the hydrolysis (60, 120, and 180 min). Increasing the concentration of Alcalase 2.4L and the duration of the hydrolysis time significantly increased the yields of free oil and protein hydrolysates and the degree of protein hydrolysis (DH), while the alkaline extraction pH had a significant effect only on the yield of the protein hydrolysates. Following an alkaline extraction at pH 10 for 30 min, we defined a practical optimum protocol consisting of a concentration of 1.25-1.5% Alcalase 2.4L and a hydrolysis time between 150 and 180 min. Under these conditions, the yields of free oil and protein hydrolysates were 73-76% and 80-83%, respectively. The hydrolysates consisted of approximately 96% of peptides with a MW less than 1500, of which about 81% had a MW less than 600 Da.
The antioxidant and antithrombotic activities of crude rapeseed peptides (CRPs) and peptide fractions (RP25 and RP55) prepared from aqueous enzymatic extraction (AEE) of rapeseed were determined. The reducing power of RP55 and CRPs was higher than that of RP25 at the same concentrations. Rapeseed peptides exhibited marked antioxidant activities. The median effective dose (ED 50 ) values of CRPs, RP25 and RP55 for a,a-diphenyl-b-picrylhydrazyl (DPPH) radical scavenging were 72, 499 and 41 lg/mL, respectively. The ED 50 values for RP25 and RP55 for hydroxyl radicals scavenging were 2.53 and 6.79 mg/mL, respectively while the ED 50 values of RP55 and CRPs for inhibition of lipid peroxidation in a liposome model system were 4.06 and 4.69 mg/mL, respectively. The inhibitory effect on lipid oxidation of RP55 was similar to that of ascorbic acid at a concentration of 5.0 mg/mL. A good positive correlation existed between the peptide concentration and antioxidant activity. RP55 generally showed more potent antioxidant activities except for hydroxyl radicals scavenging ability than RP25 and CRPs at the same concentrations, which was thought to relate to the significantly higher contents of hydrophobic amino acid, tannin, and the brown color substances in RP55. Rapeseed peptides possessed marked inhibitory activities on the thrombin-catalyzed coagulation of fibrinogen, however, their inhibitory effects were not comparable to that of heparin.
Dilatometric measurement of the thermal expansion of water in porous silica shows that the expansion coefficient increases systematically as the pore size decreases below about 15 nm. This behavior is quantitatively reproduced by molecular dynamics (MD) simulations based on a new dissociative potential. According to MD, the structure of the water is modified within approximately 6 A of the pore wall, so that it resembles bulk water at a higher pressure. On the basis of this observation, it is possible to account for the measured expansion, as the thermal expansion coefficient of bulk water increases with temperature over the range considered in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.