[1] This study first homogenizes time series of daily maximum and minimum temperatures recorded at 825 stations in China over the period from 1951 to 2010, using both metadata and the penalized maximum t test with the first-order autocorrelation being accounted for to detect change points and using the quantile-matching algorithm to adjust the data time series to diminish discontinuities. Station relocation was found to be the main cause for discontinuities, followed by station automation. The effects of discontinuities on estimation of long-term trends in the annual mean and extreme indices of temperature are illustrated. The data homogenization is shown to have improved the spatial consistency of estimated trends. Using the homogenized daily minimum and daily maximum temperature data, this study also analyzes trends in extreme temperature indices. The results show that the vast majority (85%-90%) of the 825 sites have experienced significantly more warm nights and less cold nights since 1951. There have also been more warm days and less cold days since 1951, although these trends are less extensive. About 62% of the 825 sites were found to have experienced significantly more warm days and about 50% significantly less cold days. None of the 825 sites were found to have significantly more cold nights/days or less warm nights/days. These indicate that the warming is stronger in nighttime than in daytime and stronger in winter than in summer. Thus, the diurnal temperature range was found to have significantly decreased at 49% of the 825 sites, with significant increases being identified only at 3% of these sites.
[1] North China (Huabei in Chinese) is a geographical region located between 32°N and 42°N latitude in eastern China, including several provinces and large municipalities (e.g., Beijing and Tianjin). In the past decades the region has experienced dramatic changes in air quality and climate. Among the multiple causes aerosol pollution is expected to play a particularly important role. To investigate this, a field measurement campaign was performed in April-May 2006 as part of the project Influence of Pollution on Aerosols and Cloud Microphysics in North China. Here we report the first aircraft measurements of atmospheric trace gases, aerosols, and clouds over this part of China, a region strongly affected by both natural desert dust and pollution smog. We observed very high concentrations of gaseous air pollutants and haze particles, partly together with nonprecipitating stratiform clouds. The clouds were characterized by numerous droplets, much smaller than in a less-polluted atmosphere. Our data reveal that the highly efficient coating of dust particles by pollution acids provides the predominant source of cloud condensation nuclei. The pollution-enhanced activation of dust particles into droplets is shown to be remarkably efficient so that clouds even form below 100% relative humidity. Contrary to previous analyses, we find that the haze particles influence the spectral shape of the cloud droplet size distribution such that the indirect climate cooling effect of aerosols on clouds is increased. The widespread haze, combined with low clouds, diminishes air quality and exerts an unusually strong cooling forcing on climate.
Based on the homogenized data set, we analyze changes in mean temperature and some extreme temperature indices over China since 1961 and especially during the recent warming hiatus period (1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012) in a global average context. The result shows that the decrease of annual mean maximum has contributed most to the decreases in overall mean temperature and in diurnal temperature range (DTR) during the warming hiatus period. In most parts of China except the southwest, the summer mean maximum temperature (T xS ) shows the largest increase, while the winter mean minimum temperature (T nW ) indicates slight cooling trends. These changes have augmented the seasonal cycle and increased the likelihood of extreme warm and cold events. Further analyses reveal that the increases in T xS are significantly correlated with concurrent increases in solar radiation. In southwest China, the annual mean temperature, T xS , T nW , and DTR increased during 1998-2012, possibly related to increased dryness in this region during the hiatus period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.