A competitive indirect enzyme-linked immunosorbent assay (ciELISA) using monoclonal antibodies (Mabs) having broad specificity for fluoroquinolone (FQ) antibiotics is described. Four FQs, ciprofloxacin (CIP), enrofloxacin (ENR), norfloxacin (NOR), and ofloxacin (OFL), were conjugated to bovine serum albumin for immunogens and to ovalbumin for coating antigens. A Mab C4A9H1 raised against the CIP hapten exhibited high cross-reactivity (35-100%) with 12 of 14 FQs and detected these FQs in a ciELISA below their maximum residue levels (MRLs) with good sensitivity at 50% binding inhibition (IC50). The quantitative structure-activity relationship (QSAR) between Mab C4A9H1 and various FQs by comparative molecular field analysis (CoMFA) showed a high predictive ability with a cross-validation q2 value of 0.866. Using a simple purification process and the broad-specificity ciELISA adapted for analysis of FQs in chicken muscle, chicken liver, honey, shrimp, and whole egg samples demonstrated recoveries of 60-93% for CIP, ENR, NOR, OFL, flumequine, and danofloxacin.
The increasing emergence and dissemination of multidrug resistant (MDR) bacterial pathogens accelerate the desires for new antibiotics. Natural products dominate the preferred chemical scaffolds for the discovery of antibacterial agents. Here, the potential of natural flavonoids from plants against MDR bacteria, is demonstrated. Structure–activity relationship analysis shows the prenylation modulates the activity of flavonoids and obtains two compounds, α‐mangostin (AMG) and isobavachalcone (IBC). AMG and IBC not only display rapid bactericidal activity against Gram‐positive bacteria, but also restore the susceptibility of colistin against Gram‐negative pathogens. Mechanistic studies generally show such compounds bind to the phospholipids of bacterial membrane, and result in the dissipation of proton motive force and metabolic perturbations, through distinctive modes of action. The efficacy of AMG and IBC in four models associated with infection or contamination, is demonstrated. These results suggest that natural products of plants may be a promising and underappreciated reservoir to circumvent the existing antibiotic resistance.
Objectives: To investigate two porcine Enterococcus isolates for the genetic basis of phenicol resistance and to determine the location and the genetic environment of the novel resistance gene.Methods: A total of 391 isolates with reduced florfenicol susceptibility (MIC ≥16 mg/L), obtained from 557 nasal swabs of individual pigs, were screened by PCR for the known florfenicol resistance genes. Isolates that were negative in these PCRs were analysed for their species assignment and antimicrobial susceptibility. Plasmids were extracted and subjected to transformation and conjugation assays. Restriction fragments of the phenicol resistance plasmids were cloned and sequenced. The sequences obtained were analysed and compared with sequences deposited in the databases.
Results:The two isolates, Enterococcus faecium EFM-1 and Enterococcus hirae EH-1, exhibited MICs of chloramphenicol and florfenicol of 64 mg/L and carried a new phenicol resistance gene, designated fexB. This gene codes for a phenicol exporter of 469 amino acids organized in 14 transmembrane domains. The fexB gene was located on the 35 kb pEFM-1 from E. faecium and on the 25.3 kb pEH-1 from E. hirae, respectively. Both plasmids were non-conjugative. The fexB gene was found to be embedded in virtually the same genetic environment of 14.8 kb in both plasmids.
Conclusion:To the best of our knowledge, this is the first report of the new florfenicol exporter gene fexB. Based on its plasmid location, horizontal transfer from the enterococci to other bacteria is possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.