Dielectric oxides are traditionally used to fabricate resistive surface humidity-sensing devices, as well as capacitive sandwich-structured sensors. In the present work, relative humidity (RH) sensors were fabricated by employing vertically aligned TiO(2) nanotubes array (TNA) film produced using electro-chemical anodization of Ti foil followed by a nitrogen-doping process, simultaneously showing resistive and capacitive humidity-sensing properties in the range of 11.3-93.6%. For the sample formed at optimized experimental conditions, the capacitance (C(S)) and resistance (R(S)) of the as-fabricated RH sensors made from nitrogen-doped TiO(2) nanotubes film could be simultaneously obtained. Both the resistive and capacitive sensitivity (K(R) and K(C)) of the as-fabricated TiO(2) nanotube RH sensors show distinct dependence on the frequency of alternating current (AC) voltage signal and RH. At higher water coverage, water-water interaction will result in lowering of the water dissociation barrier, leading to an increase of conductance. With the increase of RH, the polarization of as-adsorbed water molecules will also occur, causing a sharp increase of capacitance. For an explanation of the frequency response of both C(S) and R(S), ionic transport, as well as the polarization effect, should be comprehensively considered. The changes of capacitance and resistance at different temperatures are plausibly caused by thermal expansion and surface state modification by adsorption and desorption of oxygen and water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.