BackgroundCandida auris is a multidrug resistant, emerging agent of fungemia in humans. Its actual global distribution remains obscure as the current commercial methods of clinical diagnosis misidentify it as C. haemulonii. Here we report the first draft genome of C. auris to explore the genomic basis of virulence and unique differences that could be employed for differential diagnosis.ResultsMore than 99.5 % of the C. auris genomic reads did not align to the current whole (or draft) genome sequences of Candida albicans, Candida lusitaniae, Candida glabrata and Saccharomyces cerevisiae; thereby indicating its divergence from the active Candida clade. The genome spans around 12.49 Mb with 8527 predicted genes. Functional annotation revealed that among the sequenced Candida species, it is closest to the hemiascomycete species Clavispora lusitaniae. Comparison with the well-studied species Candida albicans showed that it shares significant virulence attributes with other pathogenic Candida species such as oligopeptide transporters, mannosyl transfersases, secreted proteases and genes involved in biofilm formation. We also identified a plethora of transporters belonging to the ABC and major facilitator superfamily along with known MDR transcription factors which explained its high tolerance to antifungal drugs.ConclusionsOur study emphasizes an urgent need for accurate fungal screening methods such as PCR and electrophoretic karyotyping to ensure proper management of fungemia. Our work highlights the potential genetic mechanisms involved in virulence and pathogenicity of an important emerging human pathogen namely C. auris. Owing to its diversity at the genomic scale; we expect the genome sequence to be a useful resource to map species specific differences that will help develop accurate diagnostic markers and better drug targets.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1863-z) contains supplementary material, which is available to authorized users.
Gene expression plasticity allows bacteria to adapt to diverse environments, tie their metabolism to available nutrients, and cope with stress. This is particularly relevant in a niche as dynamic and hostile as the human intestinal tract, yet transcriptional networks remain largely unknown in gutBacteroidesspp. Here, we map transcriptional units and profile their expression levels inBacteroides thetaiotaomicronover a suite of 15 defined experimental conditions that are relevant in vivo, such as variation of temperature, pH, and oxygen tension, exposure to antibiotic stress, and growth on simple carbohydrates or on host mucin–derived glycans. Thereby, we infer stress and carbon source-specific transcriptional regulons, including conditional expression of capsular polysaccharides and polysaccharide utilization loci, and expand the annotation of small regulatory RNAs (sRNAs) in this organism. Integrating this comprehensive expression atlas with transposon mutant fitness data, we identify conditionally important sRNAs. One example is MasB, whose inactivation led to increased bacterial tolerance of tetracyclines. Using MS2 affinity purification coupled with RNA sequencing, we predict targets of this sRNA and discuss their potential role in the context of the MasB-associated phenotype. Together, this transcriptomic compendium in combination with functional sRNA genomics—publicly available through a new iteration of the ′Theta–Base′ web browser (www.helmholtz-hiri.de/en/datasets/bacteroides-v2)—constitutes a valuable resource for the microbiome and sRNA research communities alike.
This study provides structural insight into the organization of the core knob components and uncovers novel proteins as knob components. This structural information can be used for the development of better vaccine design strategies or drug design to destabilize the knob structure, which is a major virulence determinant in P. falciparum malaria.
India has the third largest number of HIV-1-infected individuals accounting for approximately 2.1 million people, with a predominance of circulating subtype C strains and a low prevalence of subtype A and A1C and BC recombinant forms, identified over the past two decades. Recovery of near full-length HIV-1 genomes from a plasma source coupled with advances in next generation sequencing (NGS) technologies and development of universal methods for amplifying whole genomes of HIV-1 circulating in a target geography or population provides the opportunity for a detailed analysis of HIV-1 strain identification, evolution and dynamics. Here we describe the development and implementation of approaches for HIV-1 NGS analysis in a southern Indian cohort. Plasma samples (n = 20) were obtained from HIV-1-confirmed individuals living in and around the city of Bengaluru. Near full-length genome recovery was obtained for 9 Indian HIV-1 patients, with recovery of full-length gag and env genes for 10 and 2 additional subjects, respectively. Phylogenetic analyses indicate the majority of sequences to be represented by subtype C viruses branching within a monophyletic clade, comprising viruses from India, Nepal, Myanmar and China and closely related to a southern African cluster, with a low prevalence of the A1C recombinant form also present. Development of algorithms for bespoke recovery and analysis at a local level will further aid clinical management of HIV-1 infected Indian subjects and delineate the progress of the HIV-1 pandemic in this and other geographical regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.