We present measurements of the thermal conductance of self-assembled monolayer (SAM) junctions formed between metal leads (Au, Ag, Pt, and Pd) with mismatched phonon spectra. The thermal conductance obtained from frequency domain thermoreflectance experiments is 65 ± 7 MW/m(2) K for matched Au-alkanedithiol-Au junctions, while the mismatched Au-alkanedithiol-Pd junctions yield a thermal conductance of 36 ± 3 MW/m(2) K. The experimental observation that junction thermal conductance (per molecule) decreases as the mismatch between the lead vibrational spectra increases, paired with results from molecular dynamics (MD) simulations, suggest that phonons scatter elastically at the metal-SAM interfaces. Furthermore, we resolve a known discrepancy between measurements and MD predictions of SAM thermal conductance by using a contact mechanics model to predict 54 ± 15% areal contact in the Au-alkanedithiol-Au experimental junction. This incomplete contact obscures the actual junction thermal conductance of 115 ± 22 MW/m(2) K, which is comparable to that of metal-dielectric interfaces.
Through atomistic computational analysis of thermal transport in nanocrystal arrays (NCAs), we find that vibrational states couple elastically across the organic−inorganic interfaces with a resulting flux that depends on the ligand grafting density and the overlap between the core and ligand vibrational spectra. The modeling was performed using molecular dynamics simulations and lattice dynamics calculations on a golddodecanethiol NCA built using a robust self-assembly methodology. Our approach is validated by comparing the predicted NCA thermal conductivities against experimental measurements [Ong et al. Nat. Mater. 2013, 12, 410], with agreement found in both magnitude and trends. The self-assembly methodology enables prediction of general NCA behavior and detailed probing of experimentally inaccessible nanoscale phenomena.
This paper describes the instrumentation for broadband frequency domain thermoreflectance (BB-FDTR), a novel, continuous wave laser technique for measuring the thermal conductivity accumulation function. The thermal conductivity accumulation function describes cumulative contributions to the bulk thermal conductivity of a material from energy carriers with different mean free paths. It can be used to map reductions in thermal conductivity in nano-devices, which arise when the dimensions of the device are commensurate to the mean free path of energy carriers. BB-FDTR uses high frequency surface temperature modulation to generate non-diffusive phonon transport realized through a reduction in the perceived thermal conductivity. By controlling the modulation frequency it is possible to reconstruct the thermal conductivity accumulation function. A unique heterodyning technique is used to down-convert the signal, therein improving our signal to noise ratio and enabling results over a broader range of modulation frequencies (200 kHz-200 MHz) and hence mean free paths. © 2013 AIP Publishing LLC. [http://dx
The effect of the local molecular environment on thermal transport through organic-inorganic heterojunctions is investigated using binary self-assembled monolayer (SAM) junctions built from a mixture of alkanethiol and alkanedithiol species sandwiched between gold leads. Thermoreflectance measurements and molecular dynamics simulations demonstrate that the thermal conductances of the binary SAM junctions vary with molecular composition and are greater than predictions of a parallel resistance model. The enhancement results from increased thermal transport through the alkanethiols, whose terminal methyl groups are confined by the anchored alkanedithiols. This confinement effect extends over length scales that are more than twice the range of the van der Waals interactions between molecules and are commensurate to the sizes of experimentally observed molecular domains. Conversely, for a partially packed (i.e., submonolayer) alkanedithiol unary SAM, increasing the molecular packing density decreases the per molecule thermal conductance. This finding indicates that thermal transport measurements of SAMs cannot be used to predict the thermal transport properties of single molecules.
Mixing simple additives into poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) dispersions can greatly enhance the thermoelectric properties of the cast films with little manufacturing cost, but design rules for many of these additives have yet to emerge. We show that controlling stoichiometry in ionic liquid (I.L.) additives can decouple morphological and electronic modifications to PEDOT:PSS and enhance its power factor by over 2 orders of magnitude. Blending I.L. additives with a 1:1 stoichiometry between cationic imidazolium (Im+) derivatives and anionic bis(trifluoromethane)sulfonamide (TFSI–) groups into PEDOT:PSS dispersions raised the film conductivity to ∼1000 S/cm. The Seebeck coefficient, which gives insight into the electronic structure as well as thermoelectric performance, remained unchanged. This behavior mimics that of popular high-boiling solvent additives such as dimethyl sulfoxide and ethylene glycol, which restructure the film morphology to enhance carrier mobility. Blending I.L. additives with a 4:1 stoichiometry between Im+ and TFSI– groups raises the conductivity in a similar manner but also enhances the Seebeck coefficient. This selective Seebeck enhancement proceeds from the interaction of excess Im+ with anionic poly(styrenesulfonate) (PSS–) groups, similar to previous studies using inorganic salts, that results in a shift in charge carrier populations. Inorganic salts by themselves cannot raise the conductivity of PEDOT:PSS to appropriate values since they lack the solvent restructuring effect. These I.L. additives combine the effects of high-boiling solvents and diffuse ions, with the ability to tailor the Seebeck coefficient through ion stoichiometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.