Detection of anemia can be done by examining the hemoglobin concentration level in the blood using complete blood count, which is an invasive, time‐consuming, and costly technique. Preliminary methods for detecting anemia include examining the color of the palpebral conjunctiva, which is a non‐invasive method, but color perception may vary from person to person. This study aims to develop a computerized non‐invasive technique for anemia detection. We propose a novel machine learning model using the artificial neural network to detect anemic patients from the images of eye conjunctiva. Since limited and small dataset has been used in the earlier approaches, this may cause over fitting of the model. We have improved the number of available training images using image augmentation techniques. To standardize a non‐invasive method, we have used computer vision algorithms for preprocessing and feature extraction. This article derives the backpropagation rules mathematically for adjusting the weights for the proposed neural network model. After hyper parameter tuning and using the mathematically derived backpropagation rules, the model was able to achieve the best accuracy of 97.00% with sensitivity 99.21% and specificity 95.42% on the created dataset.
Internet acts as the best medium for proliferation and diffusion of fake news. Information quality on the internet is a very important issue, but web-scale data hinders the expert's ability to correct much of the inaccurate content or fake content present over these platforms. Thus, a new system of safeguard is needed. Traditional Fake news detection systems are based on content-based features (i.e. analyzing the content of the news) of the news whereas most recent models focus on the social features of news (i.e. how the news is diffused in the network). This paper aims to build a novel machine learning model based on Natural Language Processing (NLP) techniques for the detection of 'fake news' by using both content-based features and social features of news. The proposed model has shown remarkable results and has achieved an average accuracy of 90.62% with F1 Score of 90.33% on a standard dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.