Several emerging reconfigurable technologies have been explored in recent years offering device level runtime reconfigurability. These technologies offer the freedom to choose between p-and n-type functionality from a single transistor. In order to optimally utilize the feature-sets of these technologies, circuit designs and storage elements require novel design to complement the existing and future electronic requirements. An important aspect to sustain such endeavors is to supplement the existing design flow from the device level to the circuit level. This should be backed by a thorough evaluation so as to ascertain the feasibility of such explorations. Additionally, since these technologies offer runtime reconfigurability and often encapsulate more than one functions, hardware security features like polymorphic logic gates and on-chip key storage come naturally cheap with circuits based on these reconfigurable technologies. This paper presents innovative approaches devised for circuit designs harnessing the reconfigurable features of these nanotechnologies. New circuit design paradigms based on these nano devices will be discussed to brainstorm on exciting avenues for novel computing elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.