Purpose
This study aims to investigate the optimum proportion of coconut fibre and cement suitable for rammed earth wall construction. Coconut fibres and cement can be easily incorporated into the soil mixture which adds strength and durability to the wall. This paper highlights the salient observations from a systematic investigation on the effect of coconut fibre on the performance of stabilized rammed earth blocks.
Design/methodology/approach
Stabilization of soil was done by adding Ordinary Portland Cement (2.5, 5.0, 7.5 and 10.0 per cent by weight of soil), whereas coconut fibre in length about 15 mm was added (0.2, 0.4, 0.6, 0.8 and 1.0 per cent by weight of soil) as reinforcement. Thirty types of mixes were created by adding different proportions of cement and fibre to locally available soil and compacting the mix at constant compaction energy in three layers with Proctor rammer.
Findings
Samples were tested for compressive strength and tensile strength, and failure patterns were analysed. The use of cement and fibre increases ultimate strengths significantly up to an optimum limit of 0.8 per cent fibre content, provides a secondary benefit of keeping material bound together after failure and increases residual strength. Benefits of fibre reinforcement includes both improved ductility in comparison with raw blocks and inhibition of crack propagation after its initial formation.
Originality/value
After analysing the results, it is recommended to use 0.8 per cent fibre and 5-10 per cent cement by weight of soil to achieve considerable strength. This research may add a value in the areas of green and sustainable housing, waste utilization, etc.
Purpose -Industrial wastes such as copper slag and fly ash are being generated in tons every year and disposed mainly by land fillings, resulting in wastage of useful land. Copper slag in itself is a granular cohesionless sand-like material, while fly ash is highly pozzolanic. The purpose of this paper is to investigate copper slag and fly ash mixes with cement as stabilizer for their proper use in road construction. Design/methodology/approach -Different trial mixes of copper slag and fly ash were tested for obtaining the optimum mix having maximum dry density. Cylindrical specimens were prepared using optimum mix with different proportion of cement (3, 6 and 9 per cent) and cured for period of 7, 14 and 28 days in desiccator. Several tests such as proctor test, unconfined compressive strength test, splitting tensile strength test and soaked CBR test were carried out. Findings -After analyzing the variation of test results with varying cement content and curing period, maximum compressive strength of 10 MPa and maximum tensile strength of 1.5 MPa was found for specimen having 9 per cent cement content cured for a period of 28 days. It was concluded that copper slag and fly ash when mixed in optimum proportion and stabilized with 6 and 9 per cent cement can be effectively used as granular material in sub base and base layer of road pavement. Originality/value -A typical flexible pavement section was designed and checked using IITPAVE software which gave desired results. This paper may add value in the areas of pavement design, waste utilization, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.