The multiscale dynamics of a shock–droplet interaction is crucial in understanding the atomisation of droplets due to external airflow. The interaction phenomena are classified into wave dynamics (stage I) and droplet breakup dynamics (stage II). Stage I involves the formation of different wave structures after an incident shock impacts the droplet surface. These waves momentarily change the droplet's ambient conditions, while in later times they are mainly influenced by shock-induced airflow. Stage II involves induced airflow interaction with the droplet that leads to its deformation and breakup. Primarily, two modes of droplet breakup, i.e. shear-induced entrainment and Rayleigh–Taylor piercing (RTP) (based on the modes of surface instabilities) were observed for the studied range of Weber numbers
$(We\sim 30\text{--}15\,000)$
. A criterion for the transition between two breakup modes is obtained, which successfully explains the observation of RTP mode of droplet breakup at high Weber numbers
$(We\sim 800)$
. For
$We > 1000$
, the breakup dynamics is governed by the shear-induced surface waves. After formation, the Kelvin–Helmholtz waves travel on the droplet surface and merge to form a liquid sheet near the droplet equator. Henceforth, the liquid sheet undergoes breakup processes via nucleation of several holes. The breakup process is recurrent until the complete droplet disintegrates or external drag acting on the droplet is insufficient for further disintegration. At lower Weber numbers, the droplet undergoes complete deformation like a flattened disk, and a multibag mode of breakup based on RTP is observed.
Face masks prevent transmission of infectious respiratory diseases by blocking large droplets and aerosols during exhalation or inhalation. While three-layer masks are generally advised, many commonly available or makeshift masks contain single or double layers. Using carefully designed experiments involving high-speed imaging along with physics-based analysis, we show that high-momentum, large-sized (>250 micrometer) surrogate cough droplets can penetrate single- or double-layer mask material to a significant extent. The penetrated droplets can atomize into numerous much smaller (<100 micrometer) droplets, which could remain airborne for a significant time. The possibility of secondary atomization of high-momentum cough droplets by hydrodynamic focusing and extrusion through the microscale pores in the fibrous network of the single/double-layer mask material needs to be considered in determining mask efficacy. Three-layer masks can effectively block these droplets and thus could be ubiquitously used as a key tool against COVID-19 or similar respiratory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.