Flavor is an expression of olfactory and gustatory sensations experienced through a multitude of chemical processes triggered by molecules. Beyond their key role in defining taste and smell, flavor molecules also regulate metabolic processes with consequences to health. Such molecules present in natural sources have been an integral part of human history with limited success in attempts to create synthetic alternatives. Given their utility in various spheres of life such as food and fragrances, it is valuable to have a repository of flavor molecules, their natural sources, physicochemical properties, and sensory responses. FlavorDB (http://cosylab.iiitd.edu.in/flavordb) comprises of 25,595 flavor molecules representing an array of tastes and odors. Among these 2254 molecules are associated with 936 natural ingredients belonging to 34 categories. The dynamic, user-friendly interface of the resource facilitates exploration of flavor molecules for divergent applications: finding molecules matching a desired flavor or structure; exploring molecules of an ingredient; discovering novel food pairings; finding the molecular essence of food ingredients; associating chemical features with a flavor and more. Data-driven studies based on FlavorDB can pave the way for an improved understanding of flavor mechanisms.
Coenzyme Q10 (CoQ) or ubiquinone is found in the biological system which is synthesized by the conjugation of benzoquinone ring with isoprenoid chain of variable length. Coenzyme Q10 supplementation energizes the body and increases body energy production in the form of ATP and helps to treat various human diseases such as cardiomyopathy, muscular dystrophy, periodontal disease, etc. Reports of these potential therapeutic advantages of CoQ10 have resulted in its high market demand, which focus the researchers to work on this molecule and develop better bioprocess methods for commercial level production. At the moment, chemical synthesis, semi-synthetic method as well as bio-production utilizing microbes as biofactory are in use for the synthesis of CoQ10. Chemical synthesis involves use of cheap and easily available precursor molecules such as isoprenol, chloromethylquinone, vinylalane, and solanesol. Chemical synthesis methods due to the use of various solvents and chemicals are less feasible, which limits its application. The microbial production of CoQ10 has added advantages of being produced in optically pure form with high yield using inexpensive medium composition. Several bacteria, e.g., , and yeast such as are the potent ubiquinone producer. Some alternative biosynthetic pathway for designing of CoQ10 production coupled with metabolic engineering might help to increase CoQ10 production. The most common practiced strategy for strain development for commercial CoQ10 production is through natural isolation and chemical mutagenesis. Here, we have reviewed the chemical, semi-synthetic as well as microbial CoQ10 production in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.