Despite phenomenal clinical success, the efficacy of platinum anticancer drugs is often compromised due to inherent and acquired drug resistant phenotypes in cancers. To circumvent this issue, we designed two heterobimetallic platinum (II)‐ferrocene hybrids that display multi‐pronged anticancer action. In cancer cells, our best compound, 2, platinates DNA, produces reactive oxygen species, and has nucleus, mitochondria, and endoplasmic reticulum as potential targets. The multi‐modal mechanism of action of these hybrid agents lead to non‐apoptotic cell death induction which enables circumventing apoptosis resistance and significant improvement in platinum cross resistance profile. Finally, in addition to describing detail mechanistic insights, we also assessed its stability in plasma and demonstrate anticancer efficacy in an in vivo A2780 xenograft model. Strikingly, compared to oxaliplatin, our compound displays better tolerability, safety profile and efficacy in vivo.
Herein, a small-molecule fluorescent sensor array for rapid identification of seven heavy metal ions was designed and synthesized, with its sensing mechanism mimicking that of a tongue. The photoinduced electron transfer and intramolecular charge transfer mechanism result in combinatorial interactions between sensor array and heavy metal ions, which lead to diversified fluorescence wavelength shifts and emission intensity changes. Upon principle component analysis (PCA), this result renders clear identification of each heavy metal ion on a 3D spatial dispersion graph. Further exploration provides a concentration-dependent pattern, allowing both qualitative and quantitative measurements of heavy metal ions. On the basis of this information, a "safe-zone" concept was proposed, which provides rapid exclusion of versatile hazardous species from clean water samples based on toxicity characteristic leaching procedure standards. This type of small-molecule fluorescent sensor array could open a new avenue for multiple heavy metal ion detection and simplified water quality analysis.
Around 10 million fatalities were recorded worldwide in 2020 due to cancer and statistical projections estimate the number to increase by 60 % in 2040. With such a substantial rise in the global cancer burden, the disease will continue to impose a huge socio-economic burden on society. Currently, the most widely used clinical treatment modality is cytotoxic chemotherapy using platinum drugs which is used to treat variety of cancers. Despite its clinical success, critical challenges like resistance, off-target side effects and cancer variability often reduce its overall therapeutic efficiency. These challenges require faster diagnosis, simultaneous therapy and a more personalized approach towards cancer management. To this end, small-molecule ‘theranostic’ agents have presented a viable solution combining diagnosis and therapy into a single platform. In this review we present a summary of recent efforts in the design and optimization of metal-based small-molecule ‘theranostic’ anticancer agents. Importantly, we highlight the advantages of a theranostic candidate over the purely therapeutic or diagnostic agent in terms of evaluation of their biological properties.
Emergence of resistance in cancer cells and dose-limiting side effects severely limit the widespread use of platinum (Pt) anticancer drugs. Multiaction hybrid anticancer agents that are constructed by merging two or more pharmacophores offer the prospect of circumventing issues of Pt drugs. Herein, we report the design, synthesis, and in-depth biological evaluation of a ruthenium− ferrocene (Ru-Fc) bimetallic agent [(η 6 -p-cymene)Ru(1,1,1-trifluoro-4-oxo-4ferrocenyl-but-2-en-2-olate)Cl] and its five analogues. Along with aquation/ anation chemistry, we evaluated the in vitro antitumor potency, Pt cross-resistance profile, and in vivo antiangiogenic properties. A structure activity analysis was performed to understand the impact of Fc, CF 3 , and p-cymene groups on the anticancer potency of the Ru-Fc hybrid. Finally, in addition to assessing cellular uptake and intracellular distribution, we demonstrated that the Ru-Fc hybrid binds to nucleophilic biomolecules and produces reactive oxygen species, which causes mitochondrial dysfunction and induces ER stress, leading to poly(ADP−ribose) polymerasemediated necroptotic cell death.
Even in the modern era of precision medicine and immunotherapy, chemotherapy with platinum (Pt) drugs remains among the most commonly prescribed medications against a variety of cancers. Unfortunately, the broad applicability of these blockbuster Pt drugs is severely limited by intrinsic and/or acquired resistance, and high systemic toxicity. Considering the strong interconnection between kinetic lability and undesired shortcomings of clinical Pt drugs, we rationally designed kinetically inert organometallic Pt based anticancer agents with a novel mechanism of action. Using a combination of in vitro and in vivo assays, we demonstrated that the development of a remarkably efficacious but kinetically inert Pt anticancer agent is feasible. Along with exerting promising antitumor efficacy in Pt‐sensitive as well as Pt‐resistant tumors in vivo, our best candidate has the ability to mitigate the nephrotoxicity issue associated with cisplatin. In addition to demonstrating, for the first time, the power of kinetic inertness in improving the therapeutic benefits of Pt based anticancer therapy, we describe the detailed mechanism of action of our best kinetically inert antitumor agent. This study will certainly pave the way for designing the next generation of anticancer drugs for effective treatment of various cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.