Described herein are initial experimental details and properties of a silicon core, silica glass-clad optical fiber fabricated using conventional optical fiber draw methods. Such semiconductor core fibers have potential to greatly influence the fields of nonlinear fiber optics, infrared and THz power delivery. More specifically, x-ray diffraction and Raman spectroscopy showed the core to be highly crystalline silicon. The measured propagation losses were 4.3 dB/m at 2.936 microm, which likely are caused by either microcracks in the core arising from the large thermal expansion mismatch with the cladding or to SiO(2) precipitates formed from oxygen dissolved in the silicon melt. Suggestions for enhancing the performance of these semiconductor core fibers are provided. Here we show that lengths of an optical fiber containing a highly crystalline semiconducting core can be produced using scalable fiber fabrication techniques.
Symmetry incompatible bound states in the continuum (BICs) are the non-radiating states that remain decoupled from the radiation continuum due to the symmetry mismatch. However, it has always been challenging to observe multiple symmetry-protected BICs in single resonator dielectric metasurfaces. This work reports multiple symmetry-protected BICs for both linear polarizations in all-dielectric metasurfaces made up of split-ring resonators (SRRs). Intensive numerical simulations predict that SRR can support a high-quality factor (Q) of 106 for standalone and with substrate in presence of asymmetry. However, for a realistic and practical scenario, a Q-factor of ∼ 8000 for standalone structures is achieved, which reduces by a factor of 1.25 in the presence of silica substrate. Even if the out-of-plane asymmetry is introduced either in the geometry or variation in the angle of incidence, BICs are transformed into quasi-BICs possessing Fano resonance. Eigenmode and multipole decomposition analysis confirm multiple BIC resonances; notable dominant contributions are from magnetic dipole, toroidal dipole, and electric and magnetic quadrupole. Integrating monolayer graphene adds tunability to the metasurface, where distinct quasi-BIC modes can be employed to facilitate an excellent switching.
Van der Waal’s heterostructure assembling low dimensional materials are the new paradigm in the field of nanophotonics. In this work, we theoretically investigate Van der Waal’s optical metasurfaces consisting of graphene and hBN for the application of biosensing of multiple analytes in the mid-infrared (MIR) region. Phonon polaritons of hexagonal boron nitride (hBN) show an advantage over plasmon polaritons, as the phonon polaritons are lossless and possess high momentum and enhanced lifetime. The hybrid phonon mode produced at 6.78 µm in the mid-infrared (MIR) region with near-perfect absorption is used for surface-enhanced infrared absorption (SEIRA) based detection of organic analytes. Moreover, by adding the graphene layer, the device’s overall resonance responses can be tuned, enabling it to identify multiple organic analytes-such as 4,4’-bis(N-carbazolyl)−1,1’-biphenyl (CBP) and nitrobenzene (Nb) [C6H5NO2], just by changing graphene’s fermi potential (Ef). Owing to large wave vector of phonon polariton, the device has the capability to detect small amount of number of molecules (390 for CBP and 1990 for nitrobenzene), thus creating a highly sensitive optical biosensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.