Social media has gained huge importance in our lives wherein there is an enormous demand of getting high social popularity. With the emergence of many social media platforms and an overload of information, attaining high popularity requires efficient usage of hashtags, which can increase the reachability of a post. However, with little awareness about using appropriate hashtags, it becomes the need of the hour to build an efficient system to recommend relevant hashtags which in turn can enhance the social popularity of a post. In this paper, we thus propose a novel method hashTag RecommendAtion for eNhancing Social popularITy to recommend context-relevant hashtags that enhance popularity. Our proposed method utilizes the trending nature of hashtags by using post keywords along with the popularity of users and posts. With the prevalent evaluation techniques of this field being quite unreliable and non-uniform, we have devised a novel evaluation algorithm that is more robust and reliable. The experimental results show that our proposed method significantly outperforms the current state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.