In this paper, we investigate the problem of counting rosette leaves from an RGB image, an important task in plant phenotyping. We propose a data-driven approach for this task generalized over different plant species and imaging setups. To accomplish this task, we use state-of-theart deep learning architectures: a deconvolutional network for initial segmentation and a convolutional network for leaf counting. Evaluation is performed on the leaf counting challenge dataset at CVPPP-2017. Despite the small number of training samples in this dataset, as compared to typical deep learning image sets, we obtain satisfactory performance on segmenting leaves from the background as a whole and counting the number of leaves using simple data augmentation strategies. Comparative analysis is provided against methods evaluated on the previous competition datasets. Our framework achieves mean and standard deviation of absolute count difference of 1.62 and 2.30 averaged over all five test datasets.
In this paper, we investigate estimating emergence and biomass traits from color images and elevation maps of wheat field plots. We employ a state-of-the-art deconvolutional network for segmentation and convolutional architectures, with residual and Inception-like layers, to estimate traits via high dimensional nonlinear regression. Evaluation was performed on two different species of wheat, grown in field plots for an experimental plant breeding study. Our framework achieves satisfactory performance with mean and standard deviation of absolute difference of 1.05 and 1.40 counts for emergence and 1.45 and 2.05 for biomass estimation. Our results for counting wheat plants from field images are better than the accuracy reported for the similar, but arguably less difficult, task of counting leaves from indoor images of rosette plants. Our results for biomass estimation, even with a very small dataset, improve upon all previously proposed approaches in the literature.
In this paper, we propose an efficient architecture for semantic image segmentation using the depth-to-space (D2S) operation. Our D2S model is comprised of a standard CNN encoder followed by a depth-to-space reordering of the final convolutional feature maps. Our approach eliminates the decoder portion of traditional encoder-decoder segmentation models and reduces the amount of computation almost by half. As a participant of the DeepGlobe Road Extraction competition, we evaluate our models on the corresponding road segmentation dataset. Our highly efficient D2S models exhibit comparable performance to standard segmentation models with much lower computational cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.