This study explains the effect of ultrasound on the extraction of the bioactive compounds from garlic (Allium sativum L.) leaf powder. The experiment was carried out by varying the ultrasound amplitude (30–60%), treatment time (5–15 min), and ethanol concentration (40–60%) required to obtain the maximum extraction yield of total phenol content (TPC), total flavonoid content (TFC), and antioxidant activity. Rotatable central composite design (RCCD) provided experimental parameter combinations in the ultrasound-assisted extraction (UAE) of garlic leaf powder. The values of extraction yield, TPC, TFC, and antioxidant activity for the optimized condition of RSM were obtained at 53% amplitude, 13 min of treatment time, and 50% ethanol concentration. The values of the target compounds predicted at this optimized condition from RSM were 32.2% extraction yield, 9.9 mg GAE/g TPC, 6.8 mg QE/g TFC, and 58% antioxidant activity. The ANN-GA optimized condition for the leaf extracts was obtained at 60% amplitude, 13 min treatment time, and 53% ethanol concentration. The predicted values of optimized condition obtained by ANN-GA were recorded as 32.1738% extraction yield and 9.8661 mg GAE/g, 6.8398 mg QE/g, and 58.5527% for TPC, TFC, and antioxidant activity, respectively. The matured leaves of garlic, if not harvested during its cultivation, often go waste despite being rich in antioxidants and phenolic compounds. With the increased demand for the production of value-added products, the extraction of the bioactive compounds from garlic leaves can resolve waste management and potential health issues without affecting the crop yield through the process for high-end use in value addition.
An antioxidant is of great interest among researchers, scientists, nutritionists, and the public because of its ability to prevent oxidative damage, as indicated by various studies. This chapter mainly focuses on the free radicals and their types; antioxidants and their mode of action against free radicals; fruits, vegetables, and their byproducts as a source of antioxidants; and various analytical methods employed for assessing antioxidant activity. Antioxidants discussed in this chapter are ascorbic acid, Vitamin E, carotenoids and polyphenols, and their mechanism of action. Different antioxidant activity assay techniques have been reported. Fruits and vegetables are abundant sources of these secondary metabolites. The waste generated during processing has many bioactive materials, which possibly be used in value-added by-products.
Asian countries, despite being the largest producers and yielding a significant proportion of the world’s rice, have poor disposal facilities for the harvested rice straw (stubble). Due to higher costs in their handling relative to their value, local farmers prefer the burning of stubble fields, thus creating environmental problems. Even though the government has taken initiatives, no effective solution has been discovered to handle this large agro-waste problem efficiently. In this regard, the utilization of rice straw to develop nanocellulose (NC) products is of interest. Renewability and biodegradability, along with suitable mechanical and thermal properties required for the packaging functions, are key advantages of NC. The bio-nanocomposites prepared using NC and other bio-based polymers are also being widely considered for sustainable food packaging applications due to the reinforcement provided by NC and alternative petroleum-based packaging materials. This review provides an overview of process utilization for preparing NC products using rice straw, pulping methods, and isolation to produce bio-nanocomposites for sustainable food packaging applications. The challenges and future aspects covering the utilization of rice straw for producing NC and eventually producing active packaging materials are also discussed.
Highlights Complex impedance spectroscopy (CIS) is applied as a nondestructive tool. Impedance and capacitance approaches have been explored to predict the moisture content. The logarithmic function of impedance to capacitance predicts the moisture content precisely. Abstract. Complex impedance spectroscopy (CIS) is a powerful, nondestructive method to study the electrical properties of biomaterials. The electrical properties of spinach (Spinacia oleracea) leaf powder was used to investigate the moisture content using the nondestructive approach. Frequency-dependent relationships of impedance and capacitance with moisture content in various combinations have been explored to predict the moisture content precisely. It was found that the logarithmic function of impedance to capacitance could be used to predict the moisture content precisely in the under-investigated frequency range (1–10 MHz) with the highest accuracy, as confirmed by the found statistical support. Keywords: Complex impedance spectroscopy, Moisture estimation, Nondestructive testing, Spinach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.