Business process integration and monitoring provides an invaluable means for an enterprise to adapt to changing conditions. However, developing such applications using traditional methods is challenging because of the intrinsic complexity of integrating large-scale business processes and existing applications. Model Driven Developmente (MDDe) is an approach to developing applications-from domainspecific models to platform-sensitive models-that bridges the gap between business processes and information technology. We describe the MDD framework and methodology used to create the IBM Business Performance Management (BPM) solution. We describe how we apply model-driven techniques to BPM and present a scenario from a pilot project in which these techniques were applied. Technical details on models and transformation are presented. Our framework uses and extends the IBM business observation metamodel and introduces a data warehouse metamodel and other platform-specific and transformational models. We discuss our lessons learned and present the general guidelines for using MDD to develop enterprise-scale applications.
We describe techniques for combining two types of knowledge systems: expert and machine learning. Both the expert system and the learning system represent information by logical decision rules or trees. Unlike the classical views of knowledge-base evaluation or refinement, our view accepts the contents of the knowledge base as completely correct. The knowledge base and the results of its stored cases will provide direction for the discovery of new relationships in the form of newly induced decision rules. An expert system called SEAS was built to discover sales leads for computer products and solutions. The system interviews executives by asking questions, and based on the responses, recommends products that may improve a business' operations. Leveraging this expert system, we record the results of the interviews and the program's recommendations. The very same data stored by the expert system is used to find new predictive rules. Among the potential advantages of this approach are (a) the capability to spot new sales trends and (b) the substitution of less expensive probabilistic rules that use database data instead of interviews.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.