Histone modification has been implicated in the regulation of mammalian spermatogenesis. However, the association of differently modified histone H3 with a specific stage of germ cells during spermatogenesis is not fully understood. In this study, we examined the localization of variously modified histone H3 in paraffin-embedded sections of adult mouse testis immunohistochemically, focusing on acetylation at lysine 9 (H3K9ac), lysine 18 (H3K18ac), and lysine 23 (H3K23ac); tri-methylation at lysine 4 (H3K4me3) and lysine 27 (H3K27me3); and phosphorylation at serine 10 (H3S10phos). As a result, we found that there was a significant fluctuation in the modifications; in spermatogonia, the stainings for H3K9ac, H3K18ac, and H3K23ac were strong while that for H3K4me3 was weak. In spermatocytes, the stainings for H3K9ac, H3K18ac, H3K23ac, and H3K4me3 were reduced in the preleptotene to pachytene stage, but in diplotene stage the stainings for H3K18ac, H3K23ac, and H3K4me3 seemed to become intense again. The staining for H3K27me3 was nearly constant throughout these stages. In the ensuing spermiogenesis, a dramatic acetylation and methylation of histone H3 was found in the early elongated spermatids and then almost all signals disappeared in the late elongated spermatids, in parallel with the replacement from histones to protamines. In addition, we confirmed that the staining of histone H3S10phos was exclusively associated with mitotic and meiotic cell division. Based upon the above results, we indicated that the modification pattern of histone H3 is subject to dynamic change and specific to a certain stage of germ cell differentiation during mouse spermatogenesis.
Although ischemia-reperfusion (I/R) of small intestine is known to induce lung cell apoptosis, there is little information on intracellular and extracellular molecular mechanisms. Here, we investigated the mechanisms of apoptosis including the expression of Fas, Fas ligand (FasL), Bid, Bax, Bcl-2, cytochrome c, and activated caspase-3 in the rat lung at various time-points (0-24 h) of reperfusion after 1-h ischemia of small intestine. As assessed by TUNEL, the number of apoptotic epithelial cells, which were subsequently identified as type II alveolar epithelial cells by electron microscopy and immunohistochemical double-staining, increased at 3 h of reperfusion in the lung. However, intravenous injections of anti-TNF-alpha antibody decreased the number of TUNEL-positive cells, indicating involvement of tumor necrosis factor-alpha (TNF-alpha) in the induction of lung cell apoptosis. Western blotting and/or immunohistochemistry revealed a marked up-regulation of Fas, FasL, Bid, Bax, cytochrome c and activated caspase-3 and down-regulation of Bcl-2 in lung epithelial and stromal cells at 3 h of reperfusion. Our results indicate that I/R of small intestine results in apoptosis of rat alveolar type II cells through a series of events including systemic TNF-alpha, activation of two apoptotic signaling pathways and mitochondrial translocation of Bid.
For a better understanding of epigenetic regulation of cell differentiation, it is important to analyze DNA methylation at a specific site. Although previous studies described methylation of isolated DNA extracted from cells and tissues using a combination of appropriate restriction endonucleases, no application to tissue cell level has been reported. Here, we report a new method, named histo endonuclease-linked detection of methylation sites of DNA (HELMET), designed to detect methylation sites of DNA with a specific sequences in a tissue section. In this study, we examined changes in the methylation level of CCGG sites during spermatogenesis in paraffin-embedded sections of mouse testis. In principle, the 3'-OH ends of DNA strand breaks in a section were firstly labeled with a mixture of dideoxynucleotides by terminal deoxynucleotidyl transferase (TdT), not to be further elongated by TdT. Then the section was digested with Hpa II, resulting in cutting the center portion of non-methylated CCGG. The cutting sites were labeled with biotin-16-dUTP by TdT. Next, the section was treated with Msp I, which can cut the CCGG sequence irrespective of the presence or absence of methylation of the second cytosine, and the cutting sites were labeled with digoxigenin-11-dUTP by TdT.Finally, both biotin and digoxigenin were visualized by enzyme-or fluorescence-immunohistochemistry. Using this method, we found hypermethylation of CCGG sites in most of the germ cells although non-methylated CCGG were colocalized in elongated spermatids. Interestingly, some TUNEL-positive germ cells, which are frequent in mammalian spermatogenesis, became markedly Hpa II-reactive, indicating that the CCGG sites may be demethylated during apoptosis. Koji T et al, Page 3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.