Our study aimed to investigate the expression, functional significance, and related mechanism of long noncoding RNA CRNDE (colorectal neoplasia differentially expressed) in hepatocellular carcinoma (HCC) pathogenesis. The resulted revealed that CRNDE was significantly overexpressed in HCC tissues and cell lines, and was statistically correlated with poor clinical outcome. CRNDE knockdown markedly decreased HCC cell proliferation, migration, and chemoresistance. In addition, in vivo experiments confirmed the suppressive effect of CRNDE knockdown on HCC progression. Mechanically, CRNDE directly bound to EZH2 (enhancer of zeste homolog), SUZ12 (suppressor of zeste 12), SUV39H1, and mediated their inhibition of tumor suppressor genes, including CUGBP Elav-like family member 2 (CELF2) and large tumor suppressor 2 (LATS2). CELF2 exerted tumor suppressive effect in HCC and was involved in CRNDE-mediated oncogenic effect. In addition, the oncogenic effects of CRNDE on HCC proliferation, migration and tumorigenesis, as well as its inhibition of Hippo pathway were abolished by LATS2 overexpression. Together, our work demonstrated the importance of CRNDE in HCC progression and elucidated the underlying molecular mechanisms. These findings provided new insights into HCC pathogenesis and chemoresistance mediated by CRNDE.
Low‐intensity pulsed ultrasound (LIPUS) is a promising therapy that is widely used in clinical applications and fundamental research. Previous research has shown that LIPUS exposure has a positive effect on stem cell proliferation. However, the impact of LIPUS exposure on human bone marrow mesenchymal stem cells (hBMSCs) remains unknown. In our study, the effect and mechanism of LIPUS exposure on the proliferation of hBMSCs were investigated, and the optimal parameters of LIPUS were determined. hBMSCs were obtained and identified by flow cytometry, and the proliferation of hBMSCs was measured using the Cell Counting Kit‐8 assay to determine cell cycle and cell count. Expression levels of the phosphoinositide 3‐kinase (PI3K)/protein kinase B (AKt) pathway proteins and cyclin D1 were determined by western blot analysis. Next, hBMSCs were successfully cultured and identified as multipotent mesenchymal stem cells. We found that LIPUS could promote the proliferation of hBMSCs when the exposure time was 5 or 10 minutes per day. Furthermore, 50 or 60 mW/cm2 LIPUS had a more significant effect on cell proliferation, but if cells were irradiated by LIPUS for 20 minutes once a day, an intensity of at least 50 mW/cm2 could markedly inhibit cell growth. Cell cycle analysis demonstrated that LIPUS treatment drives cells to enter S and G2/M phases from the G0/G1 phase. LIPUS exposure increased phosphorylation of PI3K/AKt and significantly upregulated expression of cyclin D1. However, these effects were inhibited when cells were treated with PI3K inhibitor (LY294002), which in turn reduced LIPUS‐mediated proliferation of hBMSCs. These results suggest that LIPUS exposure may be involved in the proliferation of hBMSCs via activation of the PI3K/AKt signaling pathway and high expression of cyclin D1, and the intensity of 50 or 60 mW/cm2 and exposure time of 5 minutes were determined to be the optimal parameters for LIPUS exposure.
Background Hepatocellular carcinoma (HCC) is a common malignant tumor affecting the digestive system and causes serious financial burden worldwide. Hepatitis B virus (HBV) is the main causative agent of HCC in China. The present study aimed to investigate the potential mechanisms underlying HBV-related HCC and to identify core biomarkers by integrated bioinformatics analyses. Methods In the present study, HBV-related HCC GSE19665, GSE55092, GSE94660 and GSE121248 expression profiles were downloaded from the Gene Expression Omnibus database. These databases contain data for 299 samples, including 145 HBV-related HCC tissues and 154 non-cancerous tissues (from patients with chronic hepatitis B). The differentially expressed genes (DEGs) from each dataset were integrated and analyzed using the RobustRankAggreg (RRA) method and R software, and the integrated DEGs were identified. Subsequently, the gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed using the DAVID online tool, and the protein–protein interaction (PPI) network was constructed using STRING and visualized using Cytoscape software. Finally, hub genes were identified, and the cBioPortal online platform was used to analyze the association between the expression of hub genes and prognosis in HCC. Results First, 341 DEGs (117 upregulated and 224 downregulated) were identified from the four datasets. Next, GO analysis showed that the upregulated genes were mainly involved in cell cycle, mitotic spindle, and adenosine triphosphate binding. The majority of the downregulated genes were involved in oxidation reduction, extracellular region, and electron carrier activity. Signaling pathway analysis showed that the integrated DEGs shared common pathways in retinol metabolism, drug metabolism, tryptophan metabolism, caffeine metabolism, and metabolism of xenobiotics by cytochrome P450. The integrated DEG PPI network complex comprised 288 nodes, and two important modules with high degree were detected using the MCODE plug-in. The top ten hub genes identified from the PPI network were SHCBP1, FOXM1, KIF4A, ANLN, KIF15, KIF18A, FANCI, NEK2, ECT2, and RAD51AP1. Finally, survival analysis revealed that patients with HCC showing altered ANLN and KIF18A expression profiles showed worse disease-free survival. Nonetheless, patients with FOXM1, NEK2, RAD51AP1, ANLN, and KIF18A alterations showed worse overall survival. Conclusions The present study identified key genes and pathways involved in HBV-related HCC, which improved our understanding of the mechanisms underlying the development and recurrence of HCC and identified candidate targets for the diagnosis and treatment of HBV-related HCC.
Background Hypoxic–ischemic encephalopathy (HIE) is a severe anoxic brain injury that leads to premature mortality or long-term disabilities in infants. Neuroinflammation is a vital contributor to the pathogenic cascade post-HIE and a mediator to secondary neuronal death. As a plasma membrane G-protein-coupled receptor, GPR39, exhibits anti-inflammatory activity in several diseases. This study aimed to explore the neuroprotective function of GPR39 through inhibition of inflammation post-hypoxic–ischemic (HI) injury and to elaborate the contribution of sirtuin 1(SIRT1)/peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α)/nuclear factor, erythroid 2 like 2(Nrf2) in G-protein-coupled receptor 39 (GPR39)-mediated protection. Methods A total of 206 10-day-old Sprague Dawley rat pups were subjected to HIE or sham surgery. TC-G 1008 was administered intranasally at 1 h, 25 h, 49 h, and 73 h post-HIE induction. SIRT1 inhibitor EX527, GPR39 CRISPR, and PGC-1α CRISPR were administered to elucidate the underlying mechanisms. Brain infarct area, short-term and long-term neurobehavioral tests, Nissl staining, western blot, and immunofluorescence staining were performed post-HIE. Results The expression of GPR39 and pathway-related proteins, SIRT1, PGC-1α and Nrf2 were increased in a time-dependent manner, peaking at 24 h or 48-h post-HIE. Intranasal administration of TC-G 1008 reduced the percent infarcted area and improved short-term and long-term neurological deficits. Moreover, TC-G 1008 treatment significantly increased the expression of SIRT1, PGC-1α and Nrf2, but downregulated the expressions of IL-6, IL-1β, and TNF-α. GPR39 CRISPR EX527 and PGC-1α CRISPR abolished GPR39’s neuroprotective effects post-HIE. Conclusions TC-G 1008 attenuated neuroinflammation in part via the SIRT1/PGC-1α/Nrf2 pathway in a neonatal rat model of HIE. TC-G 1008 may be a novel therapeutic target for treatment post-neonatal HIE injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.