Slight changes in climate, such as the rise of temperature or alterations of precipitation and evaporation, will dramatically influence nearly all freshwater and climate-related hydrological behavior on a global scale. The hyporheic zone (HZ), where groundwater (GW) and surface waters (SW) interact, is characterized by permeable sediments, low flow velocities, and gradients of physical, chemical, and biological characteristics along the exchange flows. Hyporheic metabolism, that is biogeochemical reactions within the HZ as well as various processes that exchange substances and energy with adjoining systems, is correlated with hyporheic organisms, habitats, and the organic matter (OM) supplied from GW and SW, which will inevitably be influenced by climate-related variations. The characteristics of the HZ in acting as a transition zone and in filtering and purifying exchanged water will be lost, resulting in a weakening of the self-purification capacity of natural water bodies. Thus, as human disturbances intensify in the future, GW and SW pollution will become a greater challenge for mankind than ever before. Biogeochemical processes in the HZ may favor the release of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) under climate change scenarios. Future water resource management should consider the integrity of aquatic systems as a whole, including the HZ, rather than independently focusing on SW and GW.
To evaluate the effect of anaerobic ammonium oxidation (ANAMMOX) on benzene degradation under denitrification, a sequencing batch reactor (SBR) under denitrification synergized with ANAMMOX (SBR-DenAna) for benzene degradation was established by inoculating anaerobic ammonium-oxidizing bacteria (AnAOB) into a SBR under denitrification reactor (SBR-Den) for benzene degradation. The average rate of benzene degradation and the maximum first-order kinetic constant in SBR-DenAna were 2.34- and 1.41-fold those in SBR-Den, respectively, indicating that ANAMMOX improved the degradation of benzene under denitrification synergized with ANAMMOX. However, the average rate of benzene degradation decreased by 35% in the denitrification-ANAMMOX synergistic reactor when 10 mg N L NO was added; the rate recovered once NO was depleted, indicating that ANAMMOX might detoxify NO. Results from high-throughput sequencing analysis revealed that Azoarcus within the family Rhodocyclaceae might be associated with benzene degradation in the two SBRs. AnAOB affiliated with the family Candidatus Brocadiaceae were just detected in SBR-DenAna.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.