BackgroundThis study aimed to determine whether community-acquired pneumonia (CAP) had a metabolic profile and whether this profile can be used for disease severity assessment.MethodsA total of 175 individuals including 119 CAP patients and 56 controls were enrolled and divided into two cohorts. Serum samples from a discovery cohort (n = 102, including 38 non-severe CAP, 30 severe CAP, and 34 age and sex-matched controls) were determined by untargeted ultra-high-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based metabolomics. Selected differential metabolites between CAP patients versus controls, and between the severe CAP group versus non-severe CAP group, were confirmed by targeted mass spectrometry assays in a validation cohort (n = 73, including 32 non-severe CAP, 19 severe CAP and 22 controls). Pearson’s correlation analysis was performed to assess relationships between the identified metabolites and clinical severity of CAP. The area under the curve (AUC), sensitivity and specificity of the metabolites for predicting the severity of CAP were also investigated.ResultsThe metabolic signature was markedly different between CAP patients and controls. Fifteen metabolites were found to be significantly dysregulated in CAP patients, which were mainly mapped to the metabolic pathways of sphingolipid, arginine, pyruvate and inositol phosphate. The alternation trends of five metabolites among the three groups including sphinganine, p-Cresol sulfate, dehydroepiandrosterone sulfate (DHEA-S), lactate and l-arginine in the validation cohort were consistent with those in the discovery cohort. Significantly lower concentrations of sphinganine, p-Cresol sulfate and DHEA-S were observed in CAP patients than in controls (p < 0.05). Serum lactate and sphinganine levels were positively correlated with confusion, urea level, respiratory rate, blood pressure, and age > 65 years (CURB-65), pneumonia severity index (PSI) and Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, while DHEA-S inversely correlated with the three scoring systems. Combining lactate, sphinganine and DHEA-S as a metabolite panel for discriminating severe CAP from non-severe CAP exhibited a better AUC of 0.911 (95% confidence interval 0.825–0.998) than CURB-65, PSI and APACHE II scores.ConclusionsThis study demonstrates that serum metabolomics approaches based on the LC-MS/MS platform can be applied as a tool to reveal metabolic changes during CAP and establish a metabolite signature related to disease severity.Trial registrationClinicalTrials.gov, NCT03093220. Registered retrospectively on 28 March 2017.Electronic supplementary materialThe online version of this article (10.1186/s13054-018-2049-2) contains supplementary material, which is available to authorized users.
HRV is a common etiology in CAP among China adults, especially in severe CAP. Clinicians should be vigilant considering of the poor outcome. Highly qualified multiplex PCR techniques with invasive sampling are needed to increase the detection rate.
Human rhinovirus (HRV) is an important causative agent of acute respiratory tract infections (ARTIs). The roles of specific HRV genotypes in patients suffering from ARTIs have not been well established. We recruited 147 adult inpatients with community-acquired pneumonia (CAP) and 291 adult outpatients with upper ARTIs (URTIs). Respiratory pathogens were screened via PCR assays. HRV was detected in 42 patients, with 35 species A, five B and two C. Seventeen genotypes were identified, and HRV-A21 ranked the highest (9/42, 21.4%). The HRV-A21-positive infections were detected in four patients with CAP and in five with URTIs, all without co-infections. The HRV-A21 genome sequenced in this study contained 12 novel coding polymorphisms in viral protein (VP) 1, VP2 EF loop, VP3 knob and 3D regions. The infections of HRV-A21 virus obtained in this study could not be neutralized by antiserum of HRV-A21 prototype strain (VR-1131), indicating remarkable antigenic variation. Metagenomic analysis showed the HRV-A21 reads were dominant in bronchoalveolar lavage fluid of the three HRV-A21-positive patients with severe CAP, in which two dead. Our results highlight an unexpected infection of genotype HRV-A21 in the clinic, indicating the necessity of precise genotyping and surveillance of HRVs to improve the clinical management of ARTIs.
Abstract. Splenic abscess is a rare clinical entity. The present study reports a case of a patient that suffered from splenic abscess secondary to septicemia resulting from Klebsiella pneumoniae infection following the removal of the feeding jejunostomy tube that was utilized subsequent to the patient undergoing total gastrectomy as part of the treatment regimen for gastric adenocarcinoma. The early clinical presentation was nonspecific and multiple splenic abscesses were subsequently identified. To reduce the risks of an additional surgical procedure in this particular patient, laparoscopic assisted splenotomy and catheter drainage were performed. Due to the severe complications that occurred in the present patient, no adjuvant chemotherapy was administered. Therefore, the unusual complication of splenic abscess subsequent to total gastrectomy should be noted, and the routine feeding jejunostomy tube placement at the time of total gastrectomy should be discussed and re-assessed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.