We establish effective versions of Oppenheim’s conjecture for generic inhomogeneous quadratic forms. We prove such results for fixed shift vectors and generic quadratic forms. When the shift is rational we prove a counting result, which implies the optimal density for values of generic inhomogeneous forms. We also obtain a similar density result for fixed irrational shifts satisfying an explicit Diophantine condition. The main technical tool is a formula for the 2nd moment of Siegel transforms on certain congruence quotients of $SL_n(\mathbb{R}),$ which we believe to be of independent interest. In a sequel, we use different techniques to treat the companion problem concerning generic shifts and fixed quadratic forms.
We study shrinking targets problems for discrete time flows on a homogenous space Γ\G with G a semisimple group and Γ an irreducible lattice. Our results apply to both diagonalizable and unipotent flows, and apply to very general families of shrinking targets. As a special case, we establish logarithm laws for cusp excursions of unipotent flows answering a question of Athreya and Margulis.
Using results from spectral theory of Eisenstein series, we prove a formula for the second moment of the Siegel transform when averaged over the subspace of symplectic lattices. This generalizes the classical formula of Rogers for the second moment in the full space of unimodular lattices. Using this new formula we give very strong bounds for the discrepancy of the number of lattice points in an Borel set, which hold for generic symplectic lattices.
L'accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.centre-mersenne.org/), implique l'accord avec les conditions générales d'utilisation (http://jtnb. centre-mersenne.org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.centre-mersenne.org/ Journal de Théorie des Nombres de Bordeaux 33 (2021), 261-271 Quantitative Diophantine approximation with congruence conditions par Mahbub ALAM, Anish GHOSH et Shucheng YU Résumé. Dans ce court article, nous prouvons une version quantitative du théorème de Khintchine-Groshev avec des conditions de congruence. Notre argument repose sur un argument classique de Schmidt sur le comptage de points de réseau génériques, qui à son tour repose sur une certaine borne de variance sur l'espace des réseaux.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.